444
Views
1
CrossRef citations to date
0
Altmetric
Review

Scientometric review of transition metal oxides for hydrogen energy production

ORCID Icon &
Pages 3720-3734 | Received 29 Sep 2021, Accepted 19 Apr 2022, Published online: 28 Apr 2022

References

  • Cao, Y., W. Zhang, Y. Sun, Y. Jiang, N. Han, J. Zou, W. Si, F. Wang, A. Núñez-Delgado, and S. Liu. 2021. Highly active iron-nitrogen-boron-carbon bifunctional electrocatalytic platform for hydrogen peroxide sensing and oxygen reduction. Environmental Research 201:111563. doi:10.1016/j.envres.2021.111563.
  • Chai, J., J. Du, Q. Li, N. Han, W. Zhang, and B. Tang. 2021. Recent Breakthroughs in the Bottleneck of Cathode Materials for Li–S Batteries. Energy & Fuels 35 (19):15455–71. doi:10.1021/acs.energyfuels.1c02485.
  • Chen, Z., X. Duan, W. Wei, S. Wang, and B.-J. Ni. 2019. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. Journal of Materials Chemistry A 7 (25):14971–5005. doi:10.1039/C9TA03220G.
  • Chen, R., N. Han, L. Li, S. Wang, X. Ma, C. Wang, H. Li, H. Li, and L. Zeng. 2020. Fundamental understanding of oxygen content in activated carbon on acetone adsorption desorption. Applied Surface Science 508:145211. doi:10.1016/j.apsusc.2019.145211.
  • Chen, P., H. Liu, W. Cui, S. C. Lee, L. A. Wang, and F. Dong. 2020. Bi-based photocatalysts for light-driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges. EcoMat 2 (3):e12047. doi:10.1002/eom2.12047.
  • Chia, X., A. Y. S. Eng, A. Ambrosi, S. M. Tan, and M. Pumera. 2015. Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical reviews 115 (21):11941–66. doi:10.1021/acs.chemrev.5b00287.
  • Concina, I., Z. H. Ibupoto, and A. J. A. E. M. Vomiero. 2017. Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Advanced Energy Materials 7 (23):1700706.
  • Dholam, R., N. Patel, M. Adami, and A. Miotello. 2009. Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. international journal of hydrogen energy 34 (13):5337–46. doi:10.1016/j.ijhydene.2009.05.011.
  • Di, J., J. Chang, and S. Liu. 2020. Recent progress of two-dimensional lead halide perovskite single crystals: Crystal growth, physical properties, and device applications. EcoMat 2 (3):e12036. doi:10.1002/eom2.12036.
  • Do, H. H., D. L. T. Nguyen, X. C. Nguyen, T.-H. Le, T. P. Nguyen, Q. T. Trinh, Q. V. Le, D.-V. N. Vo, S. Y. Kim, and Q. V. Le. 2020. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review. Arabian Journal of Chemistry 13 (2):3653–71. doi:10.1016/j.arabjc.2019.12.012.
  • Douka, A. I., H. Yang, L. Huang, S. Zaman, T. Yue, W. Guo, B. Y. Xia, and B. Y. Xia. 2021. Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 3 (1):e12067. doi:10.1002/eom2.12067.
  • Eftekhari, A. 2017. Electrocatalysts for hydrogen evolution reaction. international journal of hydrogen energy 42 (16):11053–77. doi:10.1016/j.ijhydene.2017.02.125.
  • Fajrina, N., and M. Tahir. 2019. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy 44 (2):540–77. doi:10.1016/j.ijhydene.2018.10.200.
  • Fang, Z., L. Peng, Y. Qian, X. Zhang, Y. Xie, J. J. Cha, and G. Yu. 2018. Dual tuning of Ni–Co–A (A= P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. Journal of the American Chemical Society 140 (15):5241–47. doi:10.1021/jacs.8b01548.
  • Ganguly, P., M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D. D. Dionysiou, and S. C. Pillai. 2019. 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters 4 (7):1687–709. doi:10.1021/acsenergylett.9b00940.
  • Guo, Y., J. Tang, Z. Wang, Y.-M. Kang, Y. Bando, and Y. Yamauchi. 2018a. Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 47:494–502. doi:10.1016/j.nanoen.2018.03.012.
  • Guo, Y., J. Tang, Z. Wang, Y. Sugahara, and Y. Yamauchi. 2018b. Hollow Porous Heterometallic Phosphide Nanocubes for Enhanced Electrochemical Water Splitting. Small 14 (44):1802442. doi:10.1002/smll.201802442.
  • Guo, Y., X. Zhou, J. Tang, S. Tanaka, Y. V. Kaneti, J. Na, Y. Jiang, Y. Yamauchi, Y. Bando, and Y. Sugahara. 2020. Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting. Nano Energy 75:104913. doi:10.1016/j.nanoen.2020.104913.
  • Gupta, U., and C. N. R. Rao. 2017. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 41:49–65. doi:10.1016/j.nanoen.2017.08.021.
  • Han, N., R. Chen, T. Chang, L. Li, H. Wang, and L. Zeng. 2019a. A novel lanthanum strontium cobalt iron composite membrane synthesised through beneficial phase reaction for oxygen separation. Ceramics International 45 (15):18924–30. doi:10.1016/j.ceramint.2019.06.128.
  • Han, N., X. Guo, J. Cheng, P. Liu, S. Zhang, S. Huang, M. R. Rowles, J. Fransaer, and S. Liu. 2021a. Inhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter 4 (5):1720–34. doi:10.1016/j.matt.2021.02.019.
  • Han, N., P. Liu, J. Jiang, L. Ai, Z. Shao, and S. Liu. 2018a. Recent advances in nanostructured metal nitrides for water splitting. Journal of Materials Chemistry A 6 (41):19912–33. doi:10.1039/c8ta06529b.
  • Han, N., B. Meng, N. Yang, J. Sunarso, Z. Zhu, and S. Liu. 2018b. Enhancement of oxygen permeation fluxes of La0.6Sr0.4CoO3−δ hollow fiber membrane via macrostructure modification and (La0.5Sr0.5)2CoO4+δ decoration. Chemical Engineering Research and Design 134:487–96. doi:10.1016/j.cherd.2018.04.038.
  • Han, N., M. Race, W. Zhang, R. Marotta, C. Zhang, A. Bokhari, and J. J. Klemeš. 2021b. Perovskite and related oxide based electrodes for water splitting. Journal of Cleaner Production 318:128544. doi:10.1016/j.jclepro.2021.128544.
  • Han, N., Z. Shen, X. Zhao, R. Chen, and V. K. Thakur. 2022. Perovskite oxides for oxygen transport: Chemistry and material horizons. Science of The Total Environment 806:151213. doi:10.1016/j.scitotenv.2021.151213.
  • Han, N., S. Wang, Z. Yao, W. Zhang, X. Zhang, L. Zeng, and R. Chen. 2020. Superior three-dimensional perovskite catalyst for catalytic oxidation. EcoMat 2 (3):e12044. doi:10.1002/eom2.12044.
  • Han, N., Q. Wei, H. Tian, S. Zhang, Z. Zhu, J. Liu, and S. Liu. 2019b. Highly Stable Dual-Phase Membrane Based on Ce0.9Gd0.1O2–δ—La2NiO4+δ for Oxygen Permeation under Pure CO2 Atmosphere. Energy Technology 7 (5):1800701. doi:10.1002/ente.201800701.
  • Han, N., Q. Wei, S. Zhang, N. Yang, and S. Liu. 2019c. Rational design via tailoring Mo content in La2Ni1-xMoxO4+δ to improve oxygen permeation properties in CO2 atmosphere. Journal of Alloys and Compounds 806:153–62. doi:10.1016/j.jallcom.2019.07.209.
  • Han, N., Z. Yao, H. Ye, C. Zhang, P. Liang, H. Sun, S. Wang, and S. Liu. 2019d. Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst. Sustainable Materials and Technologies 20:e00108. doi:10.1016/j.susmat.2019.e00108.
  • Han, N., W. Zhang, W. Guo, S. Xie, C. Zhang, X. Zhang, J. Fransaer, and S. Liu. 2021c. Novel oxygen permeable hollow fiber perovskite membrane with surface wrinkles. Separation and Purification Technology 261:118295. doi:10.1016/j.seppur.2020.118295.
  • Han, N., C. Zhang, X. Tan, Z. Wang, S. Kawi, and S. Liu. 2019e. Re-evaluation of La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fiber membranes for oxygen separation after long-term storage of five and ten years. Journal of Membrane Science 587:117180. doi:10.1016/j.memsci.2019.117180.
  • Hosseini, H., and M. Roushani. 2020. Rational design of hollow core-double shells hybrid nanoboxes and nanopipes composed of hierarchical Cu-Ni-Co selenides anchored on nitrogen‐doped carbon skeletons as efficient and stable bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal 402:126174. doi:10.1016/j.cej.2020.126174.
  • Hou, Y., X. Zhuang, and X. J. S. M. Feng. 2017. Recent advances in earth‐abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods 1 (6):1700090.
  • Hu, M., W. Yang, H. Tan, L. Jin, L. Zhang, P. Kerns, Y. Dang, S. Dissanayake, S. Schaefer, and B. Liu. 2020. Template-free Synthesis of Mesoporous and Crystalline Transition Metal Oxide Nanoplates with Abundant Surface Defects. Matter 2 (5):1244–59. doi:10.1016/j.matt.2020.02.002.
  • Huang, H., M. Yan, C. Yang, H. He, Q. Jiang, L. Yang, Z. Lu, Z. Sun, X. Xu, and Y. Bando. 2019. Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials 31 (48):1903415. doi:10.1002/adma.201903415.
  • Jain, I. P. 2009. Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy 34 (17):7368–78. doi:10.1016/j.ijhydene.2009.05.093.
  • Jiang, L., F. Liang, Z. Zhang, D. Wu, J. Chai, T. Luo, … B. Tang. 2021a. A novel cobalt chloride hydrate modified Co-MOF derived carbon microspheres as anode materials for lithium ion batteries. Chemical Engineering Journal 133568. doi:10.1016/j.cej.2021.133568.
  • Jiang, M., M. Zhang, L. Wang, Y. Fei, S. Wang, A. Núñez-Delgado, … N. Han. 2021b. Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chemical Engineering Journal 134104. doi:10.1016/j.cej.2021.134104.
  • Kalantar-zadeh, K., J. Z. Ou, T. Daeneke, A. Mitchell, T. Sasaki, and M. S. Fuhrer. 2016. Two dimensional and layered transition metal oxides. Applied Materials Today 5:73–89. doi:10.1016/j.apmt.2016.09.012.
  • Kaneti, Y. V., N. L. Wulan Septiani, I. Saptiama, X. Jiang, B. Yuliarto, M. J. A. Shiddiky, Y. Yamauchi, Y.-M. Kang, D. Golberg, and Y. Yamauchi. 2019. Self-sacrificial templated synthesis of a three-dimensional hierarchical macroporous honeycomb-like ZnO/ZnCo2O4 hybrid for carbon monoxide sensing. Journal of Materials Chemistry A 7 (7):3415–25. doi:10.1039/C8TA11380G.
  • Kuang, P., M. Sayed, J. Fan, B. Cheng, and J. Yu. 2020. 3D Graphene-Based H2-Production Photocatalyst and Electrocatalyst. Advanced Energy Materials 10 (14):1903802. doi:10.1002/aenm.201903802.
  • Li, Q., J. Du, J. Chai, N. Han, W. Zhang, and B. Tang. 2021b. Vanadium Metaphosphate V(PO3)3 Derived from V-MOF as a Novel Anode for Lithium-Ion Batteries. ChemistrySelect 6 (31):8150–57. doi:10.1002/slct.202102311.
  • Li, M., N. Han, X. Zhang, S. Wang, M. Jiang, A. Bokhari, P. L. Show, M. Race, Z. Shen, and R. Chen. 2021a. Perovskite oxide for emerging Photo(electro)catalysis in energy and environment. Environmental Research 112544. doi:10.1016/j.envres.2021.112544.
  • Li, J., Y. Wang, T. Zhou, H. Zhang, X. Sun, J. Tang, L. Zhang, A. M. Al-Enizi, Z. Yang, and G. Zheng. 2015a. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting. Journal of the American Chemical Society 137 (45):14305–12. doi:10.1021/jacs.5b07756.
  • Li, M., Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han, and L. Guo. 2015b. Facile synthesis of electrospun MFe 2 O 4 (M= Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7 (19):8920–30. doi:10.1039/C4NR07243J.
  • Liang, Y., D. Ye, N. Han, P. Liang, J. Wang, G. Yang, C. Zhang, X. He, M. Chen, and C. Zhang. 2021. Nanoporous silver-modified LaCoO3-δ perovskite for oxygen reduction reaction. Electrochimica Acta 391:138908. doi:10.1016/j.electacta.2021.138908.
  • Liao, P., and E. A. Carter. 2013. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews 42 (6):2401–22. doi:10.1039/C2CS35267B.
  • Ling, T., D.-Y. Yan, H. Wang, Y. Jiao, Z. Hu, Y. Zheng, S.-Z. Qiao, J. Mao, H. Liu, and X.-W. Du. 2017. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature communications 8 (1):1509. doi:10.1038/s41467-017-01872-y.
  • Ling, T., T. Zhang, B. Ge, L. Han, L. Zheng, F. Lin, S.-Z. Qiao, W.-B. Hu, X.-W. Du, and K. Davey. 2019. Well-Dispersed Nickel- and Zinc-Tailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. Advanced Materials 31 (16):1807771. doi:10.1002/adma.201807771.
  • Liu, Y., N. Han, J. Jiang, and L. Ai. 2019. Boosting the oxygen evolution electrocatalysis of layered nickel hydroxidenitrate nanosheets by iron doping. international journal of hydrogen energy 44 (21):10627–36. doi:10.1016/j.ijhydene.2019.03.010.
  • Liu, X., W. Liu, M. Ko, M. Park, M. G. Kim, P. Oh, G. Wu, S. Park, A. Casimir, and G. Wu. 2015. Metal (Ni, Co)‐metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Advanced Functional Materials 25 (36):5799–808. doi:10.1002/adfm.201502217.
  • Liu, X., R. Ma, Y. Bando, and T. Sasaki. 2012. A General Strategy to Layered Transition-Metal Hydroxide Nanocones: Tuning the Composition for High Electrochemical Performance. Advanced Materials 24 (16):2148–53. doi:10.1002/adma.201104753.
  • Luo, B., G. Liu, and L. J. N. Wang. 2016. Recent advances in 2D materials for photocatalysis. Nanoscale 8 (13):6904–20. doi:10.1039/c6nr00546b.
  • Lyu, H., T. Hisatomi, Y. Goto, M. Yoshida, T. Higashi, M. Katayama, K. Domen, T. Minegishi, H. Nishiyama, and T. Yamada. 2019. An Al-doped SrTiO3 photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000 h of constant illumination. Chemical Science 10 (11):3196–201. doi:10.1039/C8SC05757E.
  • Mistry, H., A. S. Varela, S. Kühl, P. Strasser, and B. R. Cuenya. 2016. Nanostructured electrocatalysts with tunable activity and selectivity. Nature Reviews Materials 1 (4):16009. doi:10.1038/natrevmats.2016.9.
  • Patial, S., V. Hasija, P. Raizada, P. Singh, A. A. P. Khan Singh, and A. M. Asiri. 2020. Tunable photocatalytic activity of SrTiO3 for water splitting: Strategies and future scenario. Journal of Environmental Chemical Engineering 8 (3):103791. doi:10.1016/j.jece.2020.103791.
  • Preethi, V., and S. Kanmani. 2013. Photocatalytic hydrogen production. Materials Science in Semiconductor Processing 16 (3):561–75. doi:10.1016/j.mssp.2013.02.001.
  • Przyłuski, J., and K. Kolbrecka. 1993. Voltametric behaviour of Ti n O 2n−1 ceramic electrodes close to the hydrogen evolution reaction. Journal of Applied Electrochemistry 23 (10):1063–68. doi:10.1007/BF00266130.
  • Pu, Z., I. S. Amiinu, R. Cheng, P. Wang, C. Zhang, S. Mu, W. Zhao, F. Su, G. Zhang, and S. Liao. 2020. Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Letters 12 (1):21. doi:10.1007/s40820-019-0349-y.
  • Sanchez, N., S. Gallego, J. Cerdá, and M. Muñoz. 2010. Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO (0001) surface. Physical Review B 81 (11):115301. doi:10.1103/PhysRevB.81.115301.
  • Septiani, N. L. W., Y. V. Kaneti, B. Yuliarto, Nugraha, H. K. Dipojono, T. Takei, J. You, and Y. Yamauchi. 2018. Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sensors and Actuators B: Chemical 261:241–51. doi:10.1016/j.snb.2018.01.088.
  • Septiani, N. L. W., A. G. Saputro, Y. V. Kaneti, A. L. Maulana, F. Fathurrahman, H. Lim, Y. Yamauchi, H. K. Dipojono, and D. Golberg. 2020. Hollow Zinc Oxide Microsphere–Multiwalled Carbon Nanotube Composites for Selective Detection of Sulfur Dioxide. Acs Applied Nano Materials 3 (9):8982–96. doi:10.1021/acsanm.0c01707.
  • Shaner, M. R., H. A. Atwater, N. S. Lewis, and E. W. McFarland. 2016. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & Environmental Science 9 (7):2354–71. doi:10.1039/C5EE02573G.
  • Song, J., B. Feng, Y. Chu, X. Tan, J. Gao, N. Han, and S. Liu. 2019. One-step thermal processing to prepare BaCo0. 95-xBi0. 05ZrxO3-δ membranes for oxygen separation. Ceramics International 45:12579–85. doi:10.1016/j.ceramint.2019.03.087.
  • Stamenkovic, V. R., D. Strmcnik, P. P. Lopes, and N. M. Markovic. 2017. Energy and fuels from electrochemical interfaces. Nature materials 16 (1):57–69. doi:10.1038/nmat4738.
  • Sun, Y., T. Zhang, C. Li, K. Xu, and Y. Li. 2020. Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A 8 (27):13415–36. doi:10.1039/D0TA05038E.
  • Sun, Y., W. Zhang, Q. Wang, N. Han, A. Núñez-Delgado, Y. Cao, W. Si, F. Wang, and S. Liu. 2021. Biomass-derived N,S co-doped 3D multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction. Environmental Research 202:111684. doi:10.1016/j.envres.2021.111684.
  • Vij, V., S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W.-G. Lee, T. Yoon, and K. S. Kim. 2017. Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis 7 (10):7196–225. doi:10.1021/acscatal.7b01800.
  • Vijh, A. K., G. Bélanger, and R. Jacques. 1992. Electrolysis of water on silicides of some transition metals in alkaline solutions. international journal of hydrogen energy 17 (7):479–83. doi:10.1016/0360-3199(92)90146-N.
  • Walter, M. G., E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis. 2010. Solar Water Splitting Cells. Chemical reviews 110 (11):6446–73. doi:10.1021/cr1002326.
  • Wan, K., J. Luo, X. Zhang, C. Zhou, J. W. Seo, P. Subramanian, J. Fransaer, and J. Fransaer. 2019. A template-directed bifunctional NiSx/nitrogen-doped mesoporous carbon electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A 7 (34):19889–97. doi:10.1039/C9TA06446J.
  • Wang, Y., N. Lai, J. Zuo, G. Chen, and H. Du. 2016. Characteristics and trends of research on waste-to-energy incineration: A bibliometric analysis, 1999–2015. Renewable and Sustainable Energy Reviews 66:95–104. doi:10.1016/j.rser.2016.07.006.
  • Wang, H., H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, Y. J. N. C. Cui, N. Ru, Y. J. N. C. Cui, and X. Xu. 2015. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature Communications 6(1):1–8. doi:10.2147/LCTT.S70679.
  • Wang, W., M. O. Tadé, and Z. Shao. 2015. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews 44 (15):5371–408. doi:10.1039/C5CS00113G.
  • Wei, Q., S. Zhang, B. Meng, N. Han, Z. Zhu, and S. Liu. 2018. Enhancing O2-permeability and CO2-tolerance of La2NiO4+δ membrane via internal ionic-path. Materials Letters 230:161–65. doi:10.1016/j.matlet.2018.07.104.
  • Woodhouse, M., and B. J. C. S. R. Parkinson. 2009. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chemical Society reviews 38 (1):197–210. doi:10.1039/b719545c.
  • Wu, R., J. Zhang, Y. Shi, D. Liu, and B. Zhang. 2015. Metallic WO2–Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society 137 (22):6983–86. doi:10.1021/jacs.5b01330.
  • Xie, K., N. Umezawa, N. Zhang, P. Reunchan, Y. Zhang, and J. Ye. 2011. Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy & Environmental Science 4 (10):4211–19. doi:10.1039/C1EE01594J.
  • Xu, X., Y. Chen, W. Zhou, Y. Zhong, D. Guan, and Z. Shao. 2018. Earth‐Abundant Silicon for Facilitating Water Oxidation over Iron‐Based Perovskite Electrocatalyst. Advanced materials interfaces 5 (11):1701693. doi:10.1002/admi.201701693.
  • Xu, Y., and M. A. Schoonen. 2000. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist 85 (3–4):543–56. doi:10.2138/am-2000-0416.
  • Yanalak, G., A. Aljabour, E. Aslan, F. Ozel, and I. H. Patir. 2018. A systematic comparative study of the efficient co-catalyst-free photocatalytic hydrogen evolution by transition metal oxide nanofibers. International Journal of Hydrogen Energy 43 (36):17185–94. doi:10.1016/j.ijhydene.2018.07.113.
  • Yuan, X., W. Huang, D. Zhao, X. Wang, and S. Guo. 2021. Phase-pure ditungsten carbide nanoparticles covered by carbon as efficient electrocatalysts for hydrogen evolution reaction. Ceramics International 47 (9):12228–33. doi:10.1016/j.ceramint.2021.01.071.
  • Zhang, W., L. Cui, and J. Liu. 2020. Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Alloys and Compounds 821:153542. doi:10.1016/j.jallcom.2019.153542.
  • Zhang, Z., X. Ding, X. Yang, W. Tu, L. Wang, and Z. Zou. 2021c. Shedding light on CO2: Catalytic synthesis of solar methanol. EcoMat 3 (1):e12078. doi:10.1002/eom2.12078.
  • Zhang, M., N. Han, Y. Fei, J. Liu, L. Xing, A. Núñez-Delgado, M. Jiang, and S. Liu. 2021a. TiO2/g-C3N4 photocatalyst for the purification of potassium butyl xanthate in mineral processing wastewater. Journal of Environmental Management 297:113311. doi:10.1016/j.jenvman.2021.113311.
  • Zhang, W., N. Han, J. Luo, X. Han, S. Feng, W. Guo, S. Xie, Z. Zhou, P. Subramanian, K. Wan, et al. 2022. Critical Role of Phosphorus in Hollow Structures Cobalt-Based Phosphides as Bifunctional Catalysts for Water Splitting. Small 2103561. doi:10.1002/smll.202103561.
  • Zhang, X., Y. Li, C. Van Goethem, K. Wan, W. Zhang, J. Luo, J. Vankelecom, and J. Fransaer. 2019a. Electrochemically Assisted Interfacial Growth of MOF Membranes. Matter 1 (5):1285–92. doi:10.1016/j.matt.2019.06.022.
  • Zhang, X., J. Luo, K. Wan, D. Plessers, B. Sels, J. Song, L. Chen, T. Zhang, P. Tang, and J. R. Morante. 2019b. From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts. Journal of Materials Chemistry A 7 (4):1616–28. doi:10.1039/C8TA08508K.
  • Zhang, M., B. Qiu, J. M. Gallardo-Amores, M. Olguin, H. Liu, Y. Li, Y. S. Meng, S. Jiang, W. Yao, and M. E. Arroyo-de Dompablo. 2021b. High Pressure Effect on Structural and Electrochemical Properties of Anionic Redox-Based Lithium Transition Metal Oxides. Matter 4 (1):164–81. doi:10.1016/j.matt.2020.10.026.
  • Zhang, X., K. Wan, P. Subramanian, M. Xu, J. Luo, and J. Fransaer. 2020. Electrochemical deposition of metal–organic framework films and their applications. Journal of Materials Chemistry A 8 (16):7569–87. doi:10.1039/D0TA00406E.
  • Zhang, T., M.-Y. Wu, D.-Y. Yan, J. Mao, H. Liu, W.-B. Hu, S.-Z. Qiao, T. Ling, and S.-Z. Qiao. 2018. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 43:103–09. doi:10.1016/j.nanoen.2017.11.015.
  • Zhang, X., D. Zhao, Y. Zhao, P. Tang, Y. Shen, C. Xu, H. Li, and Y. Xiao. 2013. High performance asymmetric supercapacitor based on MnO2 electrode in ionic liquid electrolyte. Journal of Materials Chemistry A 1 (11):3706–12. doi:10.1039/C3TA00981E.
  • Zhou, Y.-N., Y. Ma, L. Feng, J. Zhao, Z. Tong, B. Dong, Y.-M. Chai, L. Wang, C.-G. Liu, and Y.-M. Chai. 2020. Optimized Mo–doped cobalt selenides coupled carbon nanospheres for efficient hydrogen evolution. Applied Surface Science 531:147404. doi:10.1016/j.apsusc.2020.147404.
  • Zhu, Y. P., T. Y. Ma, M. Jaroniec, and S. Z. Qiao. 2017. Self‐templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angewandte Chemie International Edition 56 (5):1324–28. doi:10.1002/anie.201610413.
  • Zou, J., N. Han, J. Yan, Q. Feng, Y. Wang, Z. Zhao, and H. Wang. 2020. Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. Electrochemical Energy Reviews 3:690–729. doi:10.1007/s41918-020-00077-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.