225
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Improvement of coalbed methane recovery rate by carbon dioxide phase transition blast fracturing

, , , , &
Pages 3659-3672 | Received 29 Nov 2021, Accepted 18 Apr 2022, Published online: 26 Apr 2022

References

  • Chen, S., D. Tang, S. Tao, P. Liu, and J. P. Mathews. 2021a. Implications of the in situ stress distribution for coalbed methane zonation and hydraulic fracturing in multiple seams, western Guizhou, China. Journal of Petroleum Science and Engineering 204:108755. doi:10.1016/j.petrol.2021.108755.
  • Chen, H., Z. Wang, X. Chen, X. Chen, and L. Wang. 2017. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. Journal of CO2 Utilization 19:112–19. doi:10.1016/j.jcou.2017.03.010.
  • Chen, Z., Y. Yuan, W. Wang, C. Zhu, Z. Qin, C. Yan, and H. Liu. 2021b. Pressure relief and permeability enhancement with carbon dioxide phase transition blasting: fracture, seepage, and practice. Lithosphere 2021 (Special 4):4983754. doi:10.2113/2021/4983754.
  • Fan, Y., B. Qin, Q. Zhou, Q. Shi, D. Ma, and J. Wu. 2020. Liquid CO2 phase transition fracturing technology and its application in enhancing gas drainage of coal mines. Adsorption Science & Technology 38 (9–10):393–412. doi:10.1177/0263617420952563.
  • Han, Y., and H. Liu. 2015. Finite Element Simulation of Medium-Range Blast Loading Using LS-DYNA”. Shock and Vibration 9. doi:10.1155/2015/631493.
  • Hao, C., Y. Cheng, H. Liu, L. Wang, and Q. Liu. 2019. A novel technology for high-efficiency borehole-enlarging to enhance gas drainage in coal seam by mechanical cutting assisted by waterjet. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18. doi:10.1080/15567036.2019.1669738.
  • He, W., F. He, K. Zhang, Y. Zhao, and H. Zhu. 2018. Increasing permeability of coal seam and improving gas drainage using a liquid carbon dioxide phase transition explosive technology. Advances in Civil Engineering 2018. https://doi.org/10.1155/2018/3976505.
  • Hu, G., W. He, and M. Sun. 2018. Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole. Journal of Natural Gas Science and Engineering 60:164–73. doi:10.1016/j.jngse.2018.10.013.
  • Kang, J., F. Zhou, Z. Qiang, and S. Zhu. 2018. Evaluation of gas drainage and coal permeability improvement with liquid CO2 gasification blasting. Advances in Mechanical Engineering 10 (4):1687814018768578. doi:10.1177/1687814018768578.
  • Ke, B., K. Zhou, C. Xu, G. Ren, and T. Jiang. 2019. Thermodynamic properties and explosion energy analysis of carbon dioxide blasting systems. Mining Technology 128 (1):39–50. doi:10.1080/25726668.2018.1527982.
  • Li, Z., G. Wei, R. Liang, P. Shi, H. Wen, and W. Zhou. 2021. LCO2-ECBM technology for preventing coal and gas outburst: Integrated effect of permeability improvement and gas displacement. Fuel 285:119219. doi:10.1016/j.fuel.2020.119219.
  • Liu, Y., Z. Chen, Q. Zou, T. Zeng, and C. Ye. 2020b. Parameter optimization of the discharge head of CO2 fracturing device based on orthogonal experiment. Mining Safety & Environmental Protection 47 (4):107–11.
  • Liu, X., Z. Wang, D. Song, X. He, and T. Yang. 2020a. Variations in surface fractal characteristics of coal subjected to liquid CO2 phase change fracturing. International Journal of Energy Research 44 (11):8740–53. doi:10.1002/er.5568.
  • Liu, J., Y. Xue, Q. Zhang, H. Wang, and S. Wang. 2022. Coupled thermo-hydro-mechanical modelling for geothermal doublet system with 3D fractal fracture. Applied Thermal Engineering 200:117716. doi:10.1016/j.applthermaleng.2021.117716.
  • Men, X., S. Tao, Z. Liu, W. Tian, and S. Chen. 2021. Experimental study on gas mass transfer process in a heterogeneous coal reservoir. Fuel Processing Technology 216:106779. doi:10.1016/j.fuproc.2021.106779.
  • Shang, Z., H. Wang, B. Li, C. Hao, X. Zhang, X. Zhang, X. Zhang, and X. Zhang. 2021. Experimental investigation of BLEVE in liquid CO2 phase-transition blasting for enhanced coalbed methane recovery. Fuel 292:120283. doi:10.1016/j.fuel.2021.120283.
  • Tao, S., S. Chen, and Z. Pan. 2019. Current status, challenges, and policy suggestions for coalbed methane industry development in China: A review. Energy Science & Engineering 7 (4):1059–74. doi:10.1002/ese3.358.
  • Tao, S., Z. Pan, S. Tang, and S. Chen. 2019. Current status and geological conditions for the applicability of CBM drilling technologies in China: A review. International Journal of Coal Geology 202:95–108. doi:10.1016/j.coal.2018.11.020.
  • Wang, X., J. Liu, Z. Luo, and H. Hu. 2021. Influence of different crack factors on acoustic wave signals using orthogonal analysis. Materials Evaluation 79 (2):136–48. doi:10.32548/2021.me-04156.
  • Xia, J., B. Dou, H. Tian, J. Zheng, G. Cui, and M. Kashif. 2021. Research on initiation of carbon dioxide fracturing pipe using the liquid carbon dioxide phase-transition blasting technology. Energies 14 (3):521. doi:10.3390/en14030521.
  • Xue, Y., J. Liu, P. Ranjith, X. Liang, and S. Wang. 2021. Investigation of the influence of gas fracturing on fracturing characteristics of coal mass and gas extraction efficiency based on a multi-physical field model. Journal of Petroleum Science and Engineering 206:109018. doi:10.1016/j.petrol.2021.109018.
  • Yang, X., G. Wang, F. Du, L. Jin, and H. Gong. 2022. N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation. Energy 239:122247. doi:10.1016/j.energy.2021.122247.
  • Zhang, D., X. Bai, G. Yin, W. Rao, and Q. He. 2018. Research and application on technology of increased permeability by liquid CO2 phase change directional jet fracturing in low-permeability coal seam. Journal of China Coal Society 43 (7):1938–50.
  • Zhou, X., J. Men, D. Song, and C. Li. 2016. Research on optimal borehole parameters of antireflection in coal seam by liquid CO2 blasting. Chin J Rock Mech Eng 35 (3):524–29.
  • Zhu, C., Y. Yuan, W. Wang, Z. Chen, S. Wang, and H. Zhong. 2021. Research on the “three shells” cooperative support technology of large-section chambers in deep mines. International Journal of Mining Science and Technology 31 (4):665–80. doi:10.1016/j.ijmst.2021.05.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.