165
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of CuO-water-ethylene glycol nanofluids on the performance of photovoltaic/thermal energy system: an experimental study

, &
Pages 3673-3691 | Received 06 Jan 2022, Accepted 15 Apr 2022, Published online: 27 Apr 2022

References

  • Abdolbaqi, M., W. Azmi, R. Mamat, N. Mohamed, and G. Najafi. 2016. Experimental investigation of turbulent heat transfer by counter and co-swirling flow in a flat tube fitted with twin twisted tapes. International Communications in Heat and Mass Transfer 75:295–302. doi:10.1016/j.icheatmasstransfer.2016.04.021.
  • Adriana, M. A. 2017. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. International Journal of Heat and Mass Transfer 104:852–60. doi:10.1016/j.ijheatmasstransfer.2016.09.012.
  • Afzal, A., I. Nawfal, I. M. Mahbubul, and S. S. Kumbar. 2018. An overview on the effect of ultra-sonication duration on different properties of nanofluids. Journal of Thermal Analysis and Calorimetry 135 (1):393–418. doi:10.1007/s10973-018-7144-8.
  • Al-Shamani, A. N., K. Sopian, S. Mat, H. A. Hasan, A. M. Abed, and M. H. Ruslan. 2016. Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management 124:528–42. doi:10.1016/j.enconman.2016.07.052.
  • Al-Waeli, A. H., M. T. Chaichan, H. A. Kazem, and K. Sopian. 2017a. Comparative study to use nano-(Al2O3, CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Conversion and Management 148:963–73. doi:10.1016/j.enconman.2017.06.072.
  • Al-Waeli, A. H., M. T. Chaichan, H. A. Kazem, K. Sopian, A. Ibrahim, S. Mat, and M. H. Ruslan. 2018a. Comparison study of indoor/outdoor experiments of a photovoltaic thermal PV/T system containing SiC nanofluid as a coolant. Energy 151:33–44. doi:10.1016/j.energy.2018.03.040.
  • Al-Waeli, A. H., M. T. Chaichan, H. A. Kazem, K. Sopian, and J. Safaei. 2018b. Numerical study on the effect of operating nanofluids of photovoltaic thermal system (PV/T) on the convective heat transfer, Case studies in thermal engineering. 12:405–13. doi:10.1016/j.csite.2018.05.011.
  • Al-Waeli, A. H., M. T. Chaichan, K. Sopian, and H. A. Kazem. 2019. Influence of the base fluid on the thermo-physical properties of PV/T nanofluids with surfactant. Case Studies in Thermal Engineering 13:100340. doi:10.1016/j.csite.2018.10.001.
  • Al-Waeli, A. H., H. A. Kazem, K. Sopian, and M. T. Chaichan. 2018c. Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia. International Journal of Sustainable Energy 37 (6):558–75. doi:10.1080/14786451.2017.1323900.
  • Al-Waeli, A. H., H. A. Kazem, J. H. Yousif, M. T. Chaichan, and K. Sopian. 2020. Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable Energy 145:963–80. doi:10.1016/j.renene.2019.06.099.
  • Al-Waeli, A. H., K. Sopian, M. T. Chaichan, H. A. Kazem, H. A. Hasan, and A. N. Al-Shamani. 2017b. An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conversion and Management 142:547–58. doi:10.1016/j.enconman.2017.03.076.
  • Al-Waeli, A. H., K. Sopian, H. A. Kazem, and M. T. Chaichan. 2016. Photovoltaic solar thermal (PV/T) collectors past, present and future: A review. International Journal of Applied Engineering Research 11 (22):10757–65.
  • Ameri, M., M. M. Mahmoudabadi, and A. Shahsavar. 2012. An experimental study on a photovoltaic/thermal (PV/T) air collector with direct coupling of fans and panels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 34 (10):929–47. doi:10.1080/15567031003735238.
  • An, W., J. Wu, T. Zhu, Q. Zhu, O. M. Lucherini, F. Magnotti, V. De Rosa, M. Galgani, C. Alviggi, and G. Marone. 2016. Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter, Applied energy. Clinical and Experimental Immunology 184 (2):197–206. doi:10.1111/cei.12768.
  • Azmi, W., K. A. Hamid, N. Usri, R. Mamat, and K. Sharma. 2016. Heat transfer augmentation of ethylene glycol: Water nanofluids and applications-A review. International Communications in Heat and Mass Transfer 75:13–23. doi:10.1016/j.icheatmasstransfer.2016.03.018.
  • Babu, J. R., K. K. Kumar, and S. S. Rao. 2017. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews 77:551–65. doi:10.1016/j.rser.2017.04.040.
  • Cacua, K., F. Ordoñez, C. Zapata, B. Herrera, E. Pabón, and R. Buitrago-Sierra. 2019. Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects 583:123960. doi:10.1016/j.colsurfa.2019.123960.
  • Chaichan, M. T., and H. A. Kazem. 2018. Generating electricity using photovoltaic solar plants in Iraq, 978-3-319-75030-9: Springer. doi:10.1007/978-3-319-75031-6.
  • Chaichan, M. T., H. A. Kazem, and T. A. Abed. 2018. Traffic and outdoor air pollution levels near highways in Baghdad, Iraq. Environment, Development and Sustainability 20 (2):589–603. doi:10.1007/s10668-016-9900-x.
  • Chakraborty, S., 2019. An investigation on the long-term stability of TiO2 nanofluid, Materials Today: Proceedings, India. 11: 714–18.
  • Chen, H., Y. Ding, Y. He, and C. Tan. 2007. Rheological behaviour of ethylene glycol based titania nanofluids. Chemical Physics Letters 444 (4–6):333–37. doi:10.1016/j.cplett.2007.07.046.
  • Chen, D., V. A. Martínez, D. A. Vasco, and A. M. Guzmán. 2020a. Experimental investigation of viscosity, enhanced thermal conductivity and zeta potential of a TiO2 electrolyte–based nanofluid. International Communications in Heat and Mass Transfer 118:104840. doi:10.1016/j.icheatmasstransfer.2020.104840.
  • Chen, Z., A. Shahsavar, A. A. Al-Rashed, and M. Afrand. 2020b. The impact of sonication and stirring durations on the thermal conductivity of alumina-liquid paraffin nanofluid: An experimental assessment. Powder Technol 360:1134–42. doi:10.1016/j.powtec.2019.11.036.
  • Choudhary, R., D. Khurana, A. Kumar, and S. Subudhi. 2017. Stability analysis of Al2O3/water nanofluids. Journal of Experimental Nanoscience 12 (1):140–51. doi:10.1080/17458080.2017.1285445.
  • Colangelo, G., E. Favale, P. Miglietta, M. Milanese, and A. de Risi. 2016. Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy 95:124–36. doi:10.1016/j.energy.2015.11.032.
  • Colangelo, G., E. Favale, M. Milanese, A. de Risi, and D. Laforgia. 2017. Cooling of electronic devices: Nanofluids contribution. Applied Thermal Engineering 127:421–35. doi:10.1016/j.applthermaleng.2017.08.042.
  • Colangelo, G., M. Milanese, and R. A. De. 2017. Numerical simulation of thermal efficiency of an innovative Al2O3 nanofluid solar thermal collector: Influence of nanoparticles concentration. Thermal Science 21 (6 Part B):2769–79. doi:10.2298/tsci151207168c.
  • De Oliveira, L. R., S. R. F. L. Ribeiro, M. H. M. Reis, V. L. Cardoso, and E. P. B. Filho. 2019. Experimental study on the thermal conductivity and viscosity of ethylene glycol-based nanofluid containing diamond-silver hybrid material. Diamond and Related Materials 96:216–30. doi:10.1016/j.diamond.2019.05.004.
  • Fudholi, A., K. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim, and H. A. Kazem. 2014. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management 78:641–51. doi:10.1016/j.enconman.2013.11.017.
  • Ghadimi, A., R. Saidur, and H. S. C. Metselaar. 2011. A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer 54 (17–18):4051–68. doi:10.1016/j.ijheatmasstransfer.2011.04.014.
  • Gupta, M., V. Singh, S. Kumar, S. Kumar, N. Dilbaghi, and Z. Said. 2018. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. Journal of Cleaner Production 190:169–92. doi:10.1016/j.jclepro.2018.04.146.
  • Hamid, K. A., W. H. Azmi, M. Nabil, and R. Mamat. 2018. Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow. International Journal of Heat and Mass Transfer 118:617–27. doi:10.1016/j.ijheatmasstransfer.2017.11.036.
  • He, Y., Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu. 2007. Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer 50 (11):2272–81. doi:10.1016/j.ijheatmasstransfer.2006.10.024.
  • Hjerrild, N. E., S. Mesgari, F. Crisostomo, J. A. Scott, R. Amal, and R. A. Taylor. 2016. Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids. Solar Energy Materials and Solar Cells 147:281–87. doi:10.1016/j.solmat.2015.12.010.
  • Holman, J. P., 2011. Experimental Methods for Engineers. 8th edition, McGraw-Hill Series in Mechanical Engineering.
  • Iacobazzi, F., M. Milanese, G. Colangelo, and A. de Risi. 2019. A critical analysis of clustering phenomenon in Al2O3 nanofluids. Journal of Thermal Analysis and Calorimetry 135 (1):371–77. doi:10.1007/s10973-018-7099-9.
  • Kazem, H. A. 2011. Renewable energy in Oman: Status and future prospects. Renewable and Sustainable Energy Reviews 15 (8):3465–69. doi:10.1016/j.rser.2011.05.015.
  • Kazem, H. A., T. Khatib, and K. Sopian. 2013. Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman. Energy and Buildings 61:108–15. doi:10.1016/j.enbuild.2013.02.011.
  • Kazem, H. A., T. Khatib, K. Sopian, and W. Elmenreich. 2014. Performance and feasibility assessment of a 1.4 kW roof top grid-connected photovoltaic power system under desertic weather conditions. Energy and Buildings 82:123–29. doi:10.1016/j.enbuild.2014.06.048.
  • Kazemi, I., M. Sefid, and M. Afrand. 2020. A novel comparative experimental study on rheological behavior of mono & hybrid nanofluids concerned graphene and silica nano-powders: Characterization, stability and viscosity measurements. Powder Technology 366:216–29. doi:10.1016/j.powtec.2020.02.010.
  • Khairul, M. A., K. Shah, E. Doroodchi, R. Azizian, and B. Moghtaderi. 2016. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. International Journal of Heat and Mass Transfer 98:778–87. doi:10.1016/j.ijheatmasstransfer.2016.03.079.
  • Khanjari, Y., F. Pourfayaz, and A. B. Kasaeian. 2016. Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management 122:263–78. doi:10.1016/j.enconman.2016.05.083.
  • Li, D., W. Fang, Y. Feng, Q. Geng, and M. Song. 2019. Stability properties of water-based gold and silver nanofluids stabilized by cationic gemini surfactants. Journal of the Taiwan Institute of Chemical Engineers 97:458–65. doi:10.1016/j.jtice.2019.02.017.
  • Li, Q., and Y. Xuan. 2002. Convective heat transfer and flow characteristics of Cu–water nanofluid. Sci China Ser E: Technol Sci 45 (4):408–16.
  • Mahbubul, I. M., T. H. Chong, S. S. Khaleduzzaman, I. M. Shahrul, R. Saidur, B. D. Long, and M. A. Amalina. 2014. Effect of ultrasonication duration on colloidal structure and viscosity of alumina–water nanofluid. Industrial & Engineering Chemistry Research 53 (16):6677–84. doi:10.1021/ie500705j.
  • Mahbubul, I. M., E. B. Elcioglu, R. Saidur, and M. A. Amalina. 2017. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrasonics Sonochemistry 37:360–67. doi:10.1016/j.ultsonch.2017.01.024.
  • Mariano, A., M. J. Pastoriza-Gallego, L. Lugo, A. Camacho, S. Canzonieri, and M. M. Piñeiro. 2013. Thermal conductivity, rheological behavior and density of non-Newtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilibria 337:119–24. doi:10.1016/j.fluid.2012.09.029.
  • Marudaipillai, S. K., B. Karuppudayar Ramaraj, R. K. Kottala, and M. Lakshmanan. 2020. Experimental study on thermal management and performance improvement of solar PV panel cooling using form stable phase change material. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18. doi:10.1080/15567036.2020.1806409.
  • Menon, G. S., S. Murali, J. Elias, D. A. Delfiya, P. V. Alfiya, and M. P. Samuel. 2022. Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy 188:986–96. doi:10.1016/j.renene.2022.02.080.
  • Moldoveanu, G. M., G. Huminic, A. A. Minea, and A. Huminic. 2018. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. International Journal of Heat and Mass Transfer 127:450–57. doi:10.1016/j.ijheatmasstransfer.2018.07.024.
  • Mustafa, U., I. A. Qeays, M. S. BinArif, S. M. Yahya, and S. B. Md. Ayob. 2020. Efficiency improvement of the solar PV-system using nanofluid and developed inverter topology. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1808119.
  • Nandan, G., 2019, November. Performance of solar photovoltaic panel using forced convection of water-based CuO nanofluid: An understanding. In IOP Conference series: materials science and engineering, India (691( 1): 012088). IOP Publishing.
  • Niyas, H., S. Prasad, and P. Muthukumar. 2017. Performance investigation of a lab–scale latent heat storage prototype–Numerical results. Energy Conversion and Management 135:188–99. doi:10.1016/j.enconman.2016.12.075.
  • Nkurikiyimfura, I., Y. Wang, B. Safari, and E. Nshingabigwi. 2021. Electrical and thermal performances of photovoltaic/thermal systems with magnetic nanofluids: A review. Particuology 54:181–200. doi:10.1016/j.partic.2020.04.004.
  • Nnanna, A. G. A. 2007. Experimental model of temperature-driven nanofluid. Journal of Heat Transfer 129 (6):697–704. doi:10.1115/1.2717239.
  • Podder, B., and A. Biswas. 2021. Performance investigation of an innovative design of a small sized single glazed solar PV/T water collector for the climatic condition of a site in North East India: An experimental study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (22):2983–95. doi:10.1080/15567036.2019.1677809.
  • Potenza, M., M. Milanese, G. Colangelo, and A. de Risi. 2017. Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid. Applied Energy 203:560–70. doi:10.1016/j.apenergy.2017.06.075.
  • Prasher, R., D. Song, J. Wang, and P. Phelan. 2006. Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters 89 (13):133108. doi:10.1063/1.2356113.
  • Rayatzadeh, H. R., M. Saffar-Avval, M. Mansourkiaei, and A. Abbassi. 2013. Effects of continuous sonication on laminar convective heat transfer inside a tube using water–TiO2 nanofluid, Exp Therm Fluid Sci. 48:8–14.
  • Routbort, J. L., D. Singh, E. V. Timofeeva, W. Yu, and D. M. France. 2011. Pumping power of nanofluids in a flowing system. Journal of Nanoparticle Research 13 (3):931–37. doi:10.1007/s11051-010-0197-7.
  • Sadeghi, R., S. G. Etemad, E. Keshavarzi, and M. Haghshenasfard. 2015. Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluidics and Nanofluidics 18 (5):1023–30. doi:10.1007/s10404-014-1491-y.
  • Sahu, P. P., A. Swain, and R. K. Sarangi, 2021. Role of PCM in solar photovoltaic cooling: An overview. In Proceedings of International Conference on Thermofluids (pp. 245–59). Springer, Singapore.
  • Saidur, R., S. Kazi, M. Hossain, M. Rahman, and H. Mohammed. 2011. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable and Sustainable Energy Reviews 15 (1):778–87. doi:10.1016/j.ijheatmasstransfer.2016.03.079.
  • Sangeetha, M., S. Manigandan, M. T. Chaichan, and V. Kumar. 2020. Progress of MWCNT, Al2O3, and CuO with water in enhancing the photovoltaic thermal system. International Journal of Energy Research 44 (2):821–32. doi:10.1002/er.4905.
  • Sardarabadi, M., M. Passandideh-Fard, and S. Z. Heris. 2014. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units. Energy 66:264–72. doi:10.1016/j.energy.2014.01.102.
  • Sathyamurthy, R., A. E. Kabeel, A. Chamkha, A. Karthick, A. M. Manokar, and M. G. Sumithra. 2021. Experimental investigation on cooling the photovoltaic panel using hybrid nanofluids. Applied Nanoscience 11 (2):363–74.
  • Shahsavar, A., and M. Ameri. 2010. Experimental investigation and modeling of a direct coupled PV/T air collector. Solar Energy 84 (11):1938–58. doi:10.1016/j.solener.2010.07.010.
  • Shahsavar, A., P. Jha, M. Arici, and G. Kefayati. 2021. A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors. Energy 220:119714. doi:10.1016/j.energy.2020.119714.
  • Shahsavar, A., M. Salmanzadeh, M. Ameri, and P. Talebizadeh. 2011. Energy saving in buildings by using the exhaust and ventilation air for cooling of photovoltaic panels. Energy and Buildings 43 (9):2219–26. doi:10.1016/j.enbuild.2011.05.003.
  • Shoghl, S. N., J. Jamali, and M. K. Moraveji. 2016. Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Experimental Thermal and Fluid Science 74:339–46. doi:10.1016/j.expthermflusci.2016.01.004.
  • Silva, V., J. Martinez, R. Heideier, J. Bernal, A. Gimenes, M. Udaeta, and M. Saidel. 2021. A long-term analysis of the architecture and operation of water film cooling system for commercial PV modules. Energies 14 (6):1515. doi:10.3390/en14061515.
  • Suganthi, K. S., and K. S. Rajan. 2012. Temperature induced changes in ZnO–water nanofluid: Zeta potential, size distribution and viscosity profiles. International Journal of Heat and Mass Transfer 55 (25–26):7969–80. doi:10.1016/j.ijheatmasstransfer.2012.08.032.
  • Tahmasbi, M., M. Siavashi, A. M. Norouzi, and M. H. Doranehgard. 2021. Thermal and electrical efficiencies enhancement of a solar photovoltaic-thermal/air system (PVT/air) using metal foams. Journal of the Taiwan Institute of Chemical Engineers 124:276–89. doi:10.1016/j.jtice.2021.03.045.
  • Teng, T. P., and Y. H. Hung. 2014. Estimation and experimental study of the density and specific heat for alumina nanofluid. Journal of Experimental Nanoscience 9 (7):707–18. doi:10.1080/17458080.2012.696219.
  • Turgut, A., I. Tavman, M. Chirtoc, H. P. Schuchmann, C. Sauter, and S. Tavman. 2009. Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. International Journal of Thermophysics 30 (4):1213–26. doi:10.1007/s10765-009-0594-2.
  • Wei, X., and L. Wang. 2010. Synthesis and thermal conductivity of microfluidic copper nanofluids. Particuology 8 (3):262–71. doi:10.1016/j.partic.2010.03.001.
  • Wen, D., and Y. Ding. 2004. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer 47 (24):5181–88. doi:10.1016/j.ijheatmasstransfer.2004.07.012.
  • Zamen, M., M. Kahani, B. Rostami, and M. Bargahi. 2022. Application of Al2O3/water nanofluid as the coolant in a new design of photovoltaic/thermal system: An experimental study. Energy Science & Engineering. doi:10.1002/ese3.1067.
  • Zawawi, N., W. Azmi, A. Redhwan, M. Sharif, and K. Sharma. 2017. Thermo-physical properties of Al2O3-SiO2/PAG composite nano lubricant for refrigeration system. International Journal of Refrigeration 80:1–10. doi:10.1016/j.ijrefrig.2017.04.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.