125
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of concentration performance at focal plane considering mirror refraction in parabolic trough concentrator

, ORCID Icon, , &
Pages 3692-3707 | Received 24 Oct 2021, Accepted 14 Apr 2022, Published online: 26 Apr 2022

References

  • Abed, N., and I. Afgan. 2020. An extensive review of various technologies for enhancing the thermal and optical performances of parabolic trough collectors. International Journal of Energy Research 44 (7):5117–64. doi:10.1002/er.5271.
  • Acar, M. S., and O. Arslan. 2017. Exergo-economic evaluation of a new drying system boosted by Ranque-Hilsch vortex tube. Applied Thermal Engineering 124:1–16. doi:10.1016/j.applthermaleng.2017.06.010.
  • Awan, A. B., M. N. Khan, M. Zubair, and E. Bellos. 2020. Commercial parabolic trough CSP plants: Research trends and technological advancements. Solar Energy 211:1422–58. doi:10.1016/j.solener.2020.09.072.
  • Chen, F., M. Li, X. Ji, X. Luo, and L. N. Wang. 2012. Influence of glass thickness of reflector on the concentrating characteristics in the solar-energy trough system. Acta Optica Sinica 32 (12):1208002. doi:10.3788/AOS201232.1208002.
  • Chen, F., M. Li, P. Zhang, Z. D. Cui, X. J. Yang, Y. Q. Liang, and Z. Y. Li. 2015. Distribution of energy density and optimization on the surface of the receiver for parabolic trough solar concentrator. International Journal of Photoenergy 2015 (5):1–10. doi:10.1155/2014/120917.
  • Cui, H. L., Z. H. Wei, C. Y. Yang, H. Yin, T. Q. Lin, Y. F. Shan, Y. Xie, H. Gu, and F. Q. Huang. 2014. Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. Journal of Materials Chemistry A 2 (23):8612–16. doi:10.1039/C4TA00176A.
  • Du, S., T. Xia, Y. L. He, Z. Y. Li, D. Li, and X. Q. Xie. 2020. Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution. Applied Energy 275:115343. doi:10.1016/j.apenergy.2020.115343.
  • Fredriksson, J., M. Eickhof, L. Giese, and M. Herzog. 2021. A comparison and evaluation of innovative parabolic trough collector concepts for large-scale application. Solar Energy 215:266–310. doi:10.1016/j.solener.2020.12.017.
  • Gong, J. H., J. Wang, P. D. Lund, E. Y. Hu, Z.-C. Xu, G.-P. Liu, and G.-S. Li. 2020. Improving the performance of a 2-stage large aperture parabolic trough solar concentrator using a secondary reflector designed by adaptive method. Renewable Energy 152:23–33. doi:10.1016/j.renene.2020.01.019.
  • Grena, R. 2010. Optical simulation of a parabolic solar trough collector. International Journal of Sustainable Energy 29 (1):19–36. doi:10.1080/14786450903302808.
  • Grineviciute, L., R. Buzelis, L. Mažulė, A. Melninkaitis, S. Kičas, and T. Tolenis. 2020. Enhancement of high reflectivity mirrors using the combination of standard and sculptured thin films. Optics & Laser Technology 129:106292. doi:10.1016/j.optlastec.2020.106292.
  • Heimsath, A., and P. Nitz. 2019. The effect of soiling on the reflectance of solar reflector materials - Model for prediction of incidence angle dependent reflectance and attenuation due to dust deposition. Solar Energy Materials and Solar Cells 195:258–68. doi:10.1016/j.solmat.2019.03.015.
  • Hoste, G., and N. Schuknecht. 2015. Thermal efficiency analysis of SkyFuel’s advanced, large-aperture, parabolic trough collector. Energy Procedia 69:96–105. doi:10.1016/j.egypro.2015.03.012.
  • Kazem, H. A., M. T. Chaichan, A. H. Al-Waeli, and K. Sopian. 2020. A review of dust accumulation and cleaning methods for solar photovoltaic systems. Journal of Cleaner Production 276:123187. doi:10.1016/j.jclepro.2020.123187.
  • Kumar, L., M. Hasanuzzaman, and N. A. Rahim. 2019. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Conversion and Management 195:885–908. doi:10.1016/j.enconman.2019.05.081.
  • Li, L. F., and S. Dubowsky. 2011. A new design approach for solar concentrating parabolic dish based on optimized flexible petals. Mechanism and Machine Theory 46 (10):1536–48. doi:10.1016/j.mechmachtheory.2011.04.012.
  • Liang, H. B., M. Fan, S. J. You, W. D. Zheng, H. Zhang, T. Z. Ye, and X. J. Zheng. 2017. A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors. Applied Energy 201:60–68. doi:10.1016/j.apenergy.2017.05.047.
  • Liu, X. Q., Y. Song, J. L. Li, and L. Y. Lu. 2021. Study of a dust deposition mechanism dominated by electrostatic force on a solar photovoltaic module. Science of the Total Environment 754:142241. doi:10.1016/j.scitotenv.2020.142241.
  • Loni, R., B. Ghobadian, A. B. Kasaeian, M. M. Akhlaghi, E. Bellos, and G. Najafi. 2020. Sensitivity analysis of parabolic trough concentrator using rectangular cavity receiver. Applied Thermal Engineering 169:114948. doi:10.1016/j.applthermaleng.2020.114948.
  • Maliani, O. D., A. Bekkaoui, E. H. Baali, K. Guissi, Y. E. I. Fellah, and R. Errais. 2020. Investigation on novel design of solar still coupled with two axis solar tracking system. Applied Thermal Engineering 172:115144. doi:10.1016/j.applthermaleng.2020.115144.
  • Qiu, Y., Y. L. He, Z. D. Cheng, and K. Wang. 2015. Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Applied Energy 146:162–73. doi:10.1016/j.apenergy.2015.01.135.
  • Qiu, Y., Y. C. Xu, Q. Li, J. K. Wang, Q. L. Wang, and B. Liu. 2021. Efficiency enhancement of a solar trough collector by combining solar and hot mirrors. Applied Energy 299:117290. doi:10.1016/j.apenergy.2021.117290.
  • Rafiei, A., R. Loni, M. H. Ahmadi, G. Najafi, E. Bellos, F. Rajaee, and E. A. Asli-Ardeh. 2020. Sensitivity analysis of a parabolic trough concentrator with linear V-shape cavity. Energy Science & Engineering 8 (10):3544–60. doi:10.1002/ese3.763.
  • Reddy, K. S., C. S. Ajay, and B. N. Kumar. 2018. Sensitivity study of thermal performance characteristics based on optical parameters for direct steam generation in parabolic trough collectors. Solar Energy 169:577–93. doi:10.1016/j.solener.2018.03.088.
  • Satish Kumar, D., N. Sunheriya, and T. RaviKiran. 2021. Review of component wise performance enhancement techniques for simple solar water heater. Energy Sources, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2021.1954728.
  • Schwinde, S., M. Schürmann, R. Schlegel, J. Kinast, R. J. Dorn, J. L. Lizon, S. Tordo, and N. Kaiser. 2019. Protected silver coatings for reflectors. CEAS Space Journal 11 (4):579–87. doi:10.1007/s12567-019-00257-9.
  • Widyolar, B., L. Jiang, J. Ferry, R. Winston, A. Kirk, M. Osowski, D. Cygan, and H. Abbasi. 2019. Theoretical and experimental performance of a two-stage (50X) hybrid spectrum splitting solar collector tested to 600 °C. Applied Energy 239:514–25. doi:10.1016/j.apenergy.2019.01.172.
  • Yang, X. H., J. F. Guo, B. Yang, H. N. Cheng, P. Wei, and Y. L. He. 2020. Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit. Applied Energy 279:115772. doi:10.1016/j.apenergy.2020.115772.
  • Yang, Z. Y., Z. W. Tang, Y. J. Xie, H. Q. Shi, B. M. Zhang, and H. J. Guo. 2018. Effect of lamina thickness of prepreg on the surface accuracy of carbon fiber composite space mirrors. Applied Composite Materials 25 (1):105–12. doi:10.1007/s10443-017-9604-x.
  • Zhang, J., X. H. Zhao, Y. L. Zheng, and X. F. Chen. 2019. Generalized nonlinear Snell’s law at χ (2) modulated nonlinear metasurfaces: Anomalous nonlinear refraction and reflection. Optics Letters 44 (2):431–34. doi:10.1364/OL.44.000431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.