327
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Energy, exergy, and environmental assessments of a direct absorption parabolic trough collector based on nanofluid volume absorption approach

& ORCID Icon
Pages 4230-4255 | Received 29 Sep 2021, Accepted 20 Apr 2022, Published online: 17 May 2022

References

  • Abdolahzade, S., M. M. Heyhat, and M. Valizade. 2022. Numerical study on the thermal behavior of porous media and nanofluid as volumetric absorbers in a parabolic trough solar collector. Journal of Porous Media. doi:10.1615/JPorMedia.2021038914.
  • Alfellag, M. A. A. 2015. Thermal analysis, design and experimental investigation of parabolic trough solar collector. Advanced Intelligent Systems Computing 334:245–60.
  • Allouhi, A., M. Benzakour Amine, R. Saidur, T. Kousksou, and A. Jamil. 2018. Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications. Energy Conversion and Management 155:201–17. August 2017. doi:10.1016/j.enconman.2017.10.059.
  • Ardente, F., G. Beccali, M. Cellura, and V. Lo Brano. 2005. Life cycle assessment of a solar thermal collector. Renewable Energy 30 (7):261–69. doi:10.1016/j.renene.2004.09.009.
  • Balakin, B. V., O. V. Zhdaneev, A. Kosinska, and K. V. Kutsenko. 2019. Direct absorption solar collector with magnetic nanofluid: CFD model and parametric analysis. Renewable Energy 136:23–32. doi:10.1016/j.renene.2018.12.095.
  • Bejan, A., and A. D. Kraus. 2003. Heat transfer handbook, Vol. 1. Hoboken, New Jersey: John Wiley & Sons, Inc.
  • Bellos, E., and C. Tzivanidis. 2017. A detailed exergetic analysis of parabolic trough collectors. Energy Conversion and Management 149:275–92. doi:10.1016/j.enconman.2017.07.035.
  • Bellos, E., C. Tzivanidis, and Z. Said. 2020. A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors. Sustainable Energy Technologies and Assessments 39:100714. doi:10.1016/j.seta.2020.100714.
  • Cengel, Y. A., and M. A. Boles. 2015. “Thermodynamics: An engineering approach, 502–05. 8th edittion ed. New York: McGraw-Hill Education.
  • Crawford, A. P. R., and A. P. G. Treloar. 2010. Database of embodied energy and water values for materials. pp. 13–15. University of Melbourne: Melbourne.
  • Dugaria, S., M. Bortolato, and D. Del Col. 2018. Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation. Renewable Energy 128 (Part B):495–508. doi:10.1016/j.renene.2017.06.029.
  • Ehyaei, M. A., A. Ahmadi, M. E. H. Assad, A. A. Hachicha, and Z. Said. 2019. Energy, exergy and economic analyses for the selection of working fluid and metal oxide nanofluids in a parabolic trough collector. Solar Energy 187:175–84. doi:10.1016/j.solener.2019.05.046.
  • Faizal, M., R. Saidur, S. Mekhilef, and M. A. Alim. 2013. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management 76:162–68. doi:10.1016/j.enconman.2013.07.038.
  • Ferriere, A., L. Lestrade, and J.-F. Robert. February 2000. Optical properties of plasma-sprayed ZrO2-Y2O3 at high temperature for solar applications. Journal of Solar Energy Engineering 122(1):9–13. doi: 10.1115/1.556275.
  • Frank, P. I. 2006. Fundamentals of heat and mass transfer. Hoboken, NJ, USA: John Wiley & Sons, Inc.
  • Gorji, T. B., and A. A. Ranjbar. 2017. Thermal and exergy optimization of a nanofluid-based direct absorption solar collector. Renewable Energy 106:274–87. doi:10.1016/j.renene.2017.01.031.
  • Heyhat, M. M., M. Valizade, S. Abdolahzade, and M. Maerefat. 2020. Thermal efficiency enhancement of direct absorption parabolic trough solar collector (DAPTSC) by using nanofluid and metal foam. Energy 192 (116662).
  • Howe, M. L., T. C. Paul, and J. A. Khan. 2021. Radiative properties of Al2O3 nanoparticles enhanced ionic liquids (NEILs) for direct absorption solar collectors. Solar Energy Materials and Solar Cells 232:111327. doi:10.1016/j.solmat.2021.111327.
  • IEA (2020), Electricity information: overview, IEA, Accessed 20th september 2021, Paris. https://www.iea.org/reports/electricity-information-overview.
  • Jafer Kutbudeen, S., K. Logesh, A. Mahalingam, and I. Vinoth Kanna. February 2021. Performance enhancement of solar collector using strip inserts and with water based Al2O3/DI water nanofluids. Energy Sources, Part A Recovery Utilization Environmental Effects:1–12.
  • Jamei, M., I. Ahmadianfar, I. A. Olumegbon, M. Karbasi, and A. Asadi. January 2021. On the assessment of specific heat capacity of nanofluids for solar energy applications: Application of Gaussian process regression (GPR) approach. Journal of Energy Storage 33:102067. doi: 10.1016/j.est.2020.102067.
  • Jurčević, M., S. Nižetić, M. Arıcı, and P. Ocłoń. 2020. Comprehensive analysis of preparation strategies for phase change nanocomposites and nanofluids with brief overview of safety equipment. Journal of Cleaner Production 274:122963. doi:10.1016/j.jclepro.2020.122963.
  • Jurčević, M., S. Nižetić, M. Arıcı, A. T. Hoang, E. Giama, and A. Papadopoulos. 2021. Thermal constant analysis of phase change nanocomposites and discussion on selection strategies with respect to economic constraints. Sustainable Energy Technologies and Assessments 43:100957. doi:10.1016/j.seta.2020.100957.
  • Kalidoss, P., S. Venkatachalapathy, and S. Suresh. June 2019. Photothermal energy conversion enhancement studies using low concentration nanofluids. Journal of Solar Energy Engineering 141(6). doi:10.1115/1.4043864.
  • Kalogirou, S. A. 2012. A detailed thermal model of a parabolic trough collector receiver. Energy 48 (1):298–306. doi:10.1016/j.energy.2012.06.023.
  • Kasaeian, A., R. Daneshazarian, R. Rezaei, F. Pourfayaz, and G. Kasaeian. 2017. Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector. Journal of Cleaner Production 158:276–84. doi:10.1016/j.jclepro.2017.04.131.
  • Khakrah, H., A. Shamloo, and S. Kazemzadeh. 2018. Exergy analysis of parabolic trough solar collectors using Al 2 O 3/synthetic oil nanofluid. Solar Energy 173:1236–47. doi:10.1016/j.solener.2018.08.064.
  • Khan, M., I. N. Alsaduni, M. Alluhaidan, W.-F. Xia, and M. Ibrahim May 2021. Evaluating the energy efficiency of a parabolic trough solar collector filled with a hybrid nanofluid by utilizing double fluid system and a novel corrugated absorber tube. Journal of the Taiwan Institute of Chemical Engineers 124:150–61. doi: 10.1016/j.jtice.2021.04.045.
  • Mashayekhi, R., H. Arasteh, P. Talebizadehsardari, A. Kumar, M. Hangi, and A. Rahbari. March 2021. Heat transfer enhancement of nanofluid flow in a tube equipped with rotating twisted tape inserts: A two-phase approach. Heat Transfer Engineering 43:1–18.
  • Minardi, J. E., and H. N. Chuang. 1975. Performance of a “black” liquid flat-plate solar collector. Solar Energy 17:179–83. doi:10.1016/0038-092X(75)90057-2.
  • Mokheimer, E. M. A., Y. N. Dabwan, M. A. Habib, S. A. M. Said, and F. A. Al-sulaiman. 2014. Techno-economic performance analysis of parabolic trough collector in Dhahran, Saudi Arabia. Energy Conversion and Management 86:622–33. doi:10.1016/j.enconman.2014.06.023.
  • Nawsud, Z. A., A. Altouni, H. S. Akhijahani, and H. Kargarsharifabad. 2022. A comprehensive review on the use of nano-fluids and nano-PCM in parabolic trough solar collectors (PTC. Sustainable Energy Technologies and Assessments 51:101889. doi:10.1016/j.seta.2021.101889.
  • Pal, R. K., and R. Kumar. 2021. Two-fluid modeling of direct steam generation in the receiver of parabolic trough solar collector with non-uniform heat flux. Energy 226:120308. doi:10.1016/j.energy.2021.120308.
  • Praseeda, K. I., B. V. Venkatarama Reddy, and M. Mani. 2017. Life-Cycle Energy Assessment in Buildings: Framework, Approaches, and Case Studies. In Martin A. Abraham, eds. Encyclopedia of Sustainable Technologies, Vol. 2. pp. 113-136. Elsevier.
  • Qin, C., J. Lee, and B. J. Lee. 2021. A hybrid direct-absorption parabolic-trough solar collector combining both volumetric and surface absorption. Applied Thermal Engineering 185:116333. doi:10.1016/j.applthermaleng.2020.116333.
  • Qiu, Y., Y. Xu, Q. Li, J. Wang, Q. Wang, and B. Liu. 2021. Efficiency enhancement of a solar trough collector by combining solar and hot mirrors. Applied Energy 299:117290. doi:10.1016/j.apenergy.2021.117290.
  • Sadık Kakaç, S., R. K. Shah, and W. Aung. 1987. Handbook of single-phase convective heat transfer. New York: Wiley.
  • Sahin, A. Z., M. A. Uddin, B. S. Yilbas, and A. Al-Sharafi. 2020. Performance enhancement of solar energy systems using nanofluids: An updated review. Renewable Energy 145:1126–48. doi:10.1016/j.renene.2019.06.108.
  • Sh, M., A. S. Nazir, M. Afrand, M. Arıcı, S. Nižetić, M. Zh, and H. F. Öztop. 2021. A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustainable Energy Technologies and Assessments 45:101103. doi:10.1016/j.seta.2021.101103.
  • Sharaf, O. Z., A. N. Al-Khateeb, D. C. Kyritsis, and E. Abu-Nada. 2018. Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions. Applied Energy 231:1132–45. doi:10.1016/j.apenergy.2018.09.191.
  • Tiwari, A. K., V. Kumar, Z. Said, and H. K. Paliwal. 2021. A review on the application of hybrid nanofluids for parabolic trough collector: Recent progress and outlook. Journal of Cleaner Production 292:126031.
  • Valizade, M., M. M. Heyhat, and M. Maerefat. 2019. Experimental comparison of optical properties of nanofluid and metal foam for using in direct absorption solar collectors. Solar Energy Materials and Solar Cells 195 (3):71–80. doi:10.1016/j.solmat.2019.01.050.
  • Valizade, M., M. M. Heyhat, and M. Maerefat. 2020. Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption. Renewable Energy 145:261–69. doi:10.1016/j.renene.2019.05.112.
  • Xiong, Q., A. Hajjar, B. Alshuraiaan, M. Izadi, S. Altnji, and S. A. Shehzad. 2021. State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles. Journal of Cleaner Production 310:127528. doi:10.1016/j.jclepro.2021.127528.
  • Zh, L., A. Kan, K. Wang, Y. He, N. Zheng, and W. Yu. 2022. Optical properties and photothermal conversion performances of graphene based nanofluids. Applied Thermal Engineering 203:117948. doi:10.1016/j.applthermaleng.2021.117948.
  • Zhu, Y., P. Li, Z. Ruan, and Y. Yuan. 2022. A model and thermal loss evaluation of a direct-absorption solar collector under the influence of radiation. Energy Conversion and Management 251:114933. doi:10.1016/j.enconman.2021.114933.
  • Zuo, X., W. Yang, M. Shi, H. Yan, C. Guan, S. Wu, Z. Zhang, X. Li, and L. Zh. 2021. Experimental investigation on photothermal conversion properties of lampblack ink nanofluids. Solar Energy 218:1–10. doi:10.1016/j.solener.2021.02.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.