156
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Influence of Reynolds number on the performance of small horizontal axis wind turbine with fixed speed operation

ORCID Icon & ORCID Icon
Pages 4016-4031 | Received 27 Dec 2021, Accepted 15 Apr 2022, Published online: 11 May 2022

References

  • Alkhabbaz, A., H.S. Yang, A. H. S. Weerakoon, and Y.H. Lee. 2021. A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine. Renewable Energy 178:1398–420. doi:10.1016/j.renene.2021.06.077.
  • Bai, C.J., P.W. Chen, and W.C. Wang. 2016. Aerodynamic design and analysis of a 10 kW horizontal-axis wind turbine for Tainan, Taiwan. Clean Technologies and Environmental Policy 18:1151–66. doi:10.1007/s10098-016-1109-z.
  • Bai, C. J., and W. C. Wang. 2016. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renewable and Sustainable Energy Reviews 63:506–19. doi:10.1016/j.rser.2016.05.078.
  • Bak, C., J. Johansen, and P. B. Andersen. 2006. Three-dimensional corrections of airfoil characteristics based on pressure distributions. European Wind Energy Conference Exhibition 2006 1:417–26.
  • Bavanish, B., and K. Thyagarajan. 2013. Optimization of power coefficient on a horizontal axis wind turbine using bem theory. Renewable and Sustainable Energy Reviews 26:169–82. doi:10.1016/j.rser.2013.05.009.
  • Breton, S. P., F. N. Coton, and G. Moe. 2008. A study on rotational effects and different stall delay models using a prescribed wake vortex scheme and NREL phase VI experiment data. Wind Energy 11:459–82. doi:10.1002/we.269.
  • Brunner, C. E., J. Kiefer, M. O. L. Hansen, and M. Hultmark. 2021. Study of Reynolds number effects on the aerodynamics of a moderately thick airfoil using a high-pressure wind tunnel. Experiments in Fluids 62:1–17. doi:10.1007/s00348-021-03267-8.
  • Ceyhan, Ö. 2012. Towards 20MW wind turbine: High Reynolds number effects on rotor design. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 9–12. doi:10.2514/6.2012-1157.
  • Devinant, P., T. Laverne, and J. Hureau. 2002. Experimental study of wind-turbine airfoil aerodynamics in high turbulence. Journal of Wind Engineering and Industrial Aerodynamics 90:689–707. doi:10.1016/S0167-6105(02)00162-9.
  • El-Okda, Y. M. 2015. Design methods of horizontal axis wind turbine rotor blades. International Journal of Ind Electron Drives 2:135. doi:10.1504/ijied.2015.072789.
  • Gasch, R., and J. Twele. 2012. Blade geometry according to Betz and Schmitz. In Wind power plants: Fundamentals, design, construction and operation, 2nd ed., 1–548. Berlin, Heidelberg: Springer.
  • Ge, M., L. Fang, D. Tian. 2015. Influence of Reynolds number on multi-objective aerodynamic design of a wind turbine blade. PLoS One 10:1–25. doi:10.1371/journal.pone.0141848.
  • Ge, M., D. Tian, and Y. Deng. 2016. Reynolds number effect on the optimization of a wind turbine blade for maximum aerodynamic efficiency. Journal of Energy Engineering 142. doi:10.1061/(ASCE)EY.1943-7897.0000254.
  • Gue, I. H. V., A. T. Ubando, M. L. Tseng, and R. R. Tan. 2020. Artificial neural networks for sustainable development: A critical review. Clean Technologies and Environmental Policy 22:1449–65. doi:10.1007/s10098-020-01883-2.
  • Hassanzadeh, A., A. Hassanzadeh Hassanabad, and A. Dadvand. 2016. Aerodynamic shape optimization and analysis of small wind turbine blades employing the Viterna approach for post-stall region. Alexandria Engineering Journal 55:2035–43. doi:10.1016/j.aej.2016.07.008.
  • Ismail, K. A. R., T. Canale, and F. A. M. Lino. 2018. Parametric analysis of Joukowski airfoil for 10-kW horizontal axis windmill. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40:1–18. doi:10.1007/s40430-018-1119-3.
  • Lanzafame, R., and M. Messina. 2007. Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory. Renewable Energy 32:2291–305. doi:10.1016/j.renene.2006.12.010.
  • Lee, H., and D. J. Lee. 2020. Low Reynolds number effects on aerodynamic loads of a small scale wind turbine. Renewable Energy 154:1283–93. doi:10.1016/j.renene.2020.03.097.
  • Liu, X., L. Wang, and X. Tang. 2013. Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renewable Energy. 57:111–19. doi:10.1016/j.renene.2013.01.036.
  • Manwell, J., J. McGowan, and A. Rogers. 2010. Wind energy explained: Theory, design and application. West Sussex, United Kingdom: John Wiley & Sons.
  • McTavish, S., D. Feszty, and F. Nitzsche. 2013. Evaluating Reynolds number effects in small-scale wind turbine experiments. Journal of Wind Engineering and Industrial Aerodynamics 120:81–90. doi:10.1016/j.jweia.2013.07.006.
  • Miller, M. A., J. Kiefer, C. Westergaard, M. O. L. Hansen, and M. Hultmark. 2019. Horizontal axis wind turbine testing at high Reynolds numbers. Physical Review Fluids 4:1–22. doi:10.1103/PhysRevFluids.4.110504.
  • Najafian Ashrafi, Z., M. Ghaderi, and A. Sedaghat. 2015. Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control. Energy Conversion and Management 93:349–56. doi:10.1016/j.enconman.2015.01.048.
  • Pourrajabian, A., M. Mirzaei, R. Ebrahimi, and D. Wood. 2014. Effect of air density on the performance of a small wind turbine blade: A case study in Iran. Journal of Wind Engineering and Industrial Aerodynamics 126:1–10. doi:10.1016/j.jweia.2014.01.001.
  • Pratumnopharat, P., and P. S. Leung. 2011. Validation of various windmill brake state models used by blade element momentum calculation. Renewable Energy 36:3222–27. doi:10.1016/j.renene.2011.03.027.
  • Shen, W. Z., R. Mikkelsen, J. N. Sørensen, and C. Bak. 2005. Tip loss corrections for wind turbine computations. Wind Energy 8:457–75. doi:10.1002/we.153.
  • Sultana, N., S. M. Zakir Hossain, M. S. Alam, M. S. Islam, and A. M. A. Al. 2020. Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete. Advances in Engineering Software 149:102887. doi:10.1016/j.advengsoft.2020.102887.
  • Verma, N., and B. D. Baloni. 2021a. Influence of Reynolds number consideration for aerodynamic characteristics of airfoil on the blade design of small horizontal axis wind turbine. International Journal of Green Energy 1–14. doi:10.1080/15435075.2021.1960356.
  • Verma, N., and B. D. Baloni. 2021b. Artificial neural network ‑ based meta ‑ models for predicting the aerodynamic characteristics of two ‑ dimensional airfoils for small horizontal axis wind turbine. Clean Technologies and Environmental Policy. doi:10.1007/s10098-021-02059-2.
  • Viterna, L. A., and D. C. Janetzke. 1982. Theoretical and experimental power from large horizontal-axis wind turbines. Cleveland, OH (USA): NASA Tech Memo. doi:10.2172/6763041.
  • Winslow, J., H. Otsuka, B. Govindarajan, and I. Chopra. 2018. Basic understanding of airfoil characteristics at low Reynolds numbers (104–105). Journal of Aircraft 55:1050–61. doi:10.2514/1.C034415.
  • Zhu, W. J., W. Z. Shen, and J. N. Sørensen. 2014. Integrated airfoil and blade design method for large wind turbines. Renewable Energy 70:172–83. doi:10.1016/j.renene.2014.02.057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.