183
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Methane and helium adsorption of coal and its related deformation under different temperature and pressures

, ORCID Icon, &
Pages 3929-3944 | Received 16 Jan 2022, Accepted 21 Apr 2022, Published online: 03 May 2022

References

  • Bing, L., and C. Tianyu. 2012. Research on the impact of pressure distribution on well pattern arrangement in coalbed methane reservoir[J]. Engineering Mechanics 29 (10):359–65.
  • Chen, Z., Z. Pan, J. Liu, L. D. Connell, D. Elsworth. 2011. Effect of the effective stress coefficient and sorption-induced strain on the evolution of coal permeability: Experimental observations[J]. International Journal of Greenhouse Gas Control. 5(5):1284–93. doi:10.1016/j.ijggc.2011.07.005.
  • Gao, H., M. Nomura, S. Murata, L. Artok. 1999. Statistical distribution characteristics of pyridine transport in coal particles and a series of new phenomenological models for overshoot and nonovershoot solvent swelling of coal particles[J]. Energy and Fuels. 13(2):518–28. doi:10.1021/ef980210l.
  • Guan, C., S. Liu, C. Li, Y. Wang, Y. Zhao, et al. 2018. The temperature effect on the methane and CO2 adsorption capacities of Illinois coal[J]. Fuel 211:241–50. doi:10.1016/j.fuel.2017.09.046.
  • Guo, H., H. Tang, Y. Wu, K. Wang, C. Xu, et al. 2021a. Gas seepage in underground coal seams: Application of the equivalent scale of coal matrix-fracture structures in coal permeability measurements[J]. Fuel 288:119641. doi:10.1016/j.fuel.2020.119641.
  • Guo, H., K. Wang, Y. Wu, H. Tang, J. Wu, L. Guan, C. Chang, C. Xu, et al. 2021b. Evaluation of the weakening behavior of gas on the coal strength and its quantitative influence on the coal deformation[J]. International Journal of Mining Science and Technology. 31(3):451–62. doi:10.1016/j.ijmst.2021.03.005.
  • He, X., X. Liu, D. Song, B. Nie, et al. 2019. Effect of microstructure on electrical property of coal surface[J]. Applied Surface Science 483:713–20. doi:10.1016/j.apsusc.2019.03.342.
  • K, H. S., G. S. D, B. K. A, J. S. Esterle, et al. 2014. Stable isotopic and molecular composition of desorbed coal seam gases from the Walloon subgroup, eastern Surat Basin, Australia[J]. International Journal of Coal Geology 122:21–36. doi:10.1016/j.coal.2013.12.003.
  • Kong, X., S. Li, E. Wang, X. Wang, Y. Zhou, P. Ji, H. Shuang, S. Li, Z. Wei, et al. 2021. Experimental and numerical investigations on dynamic mechanical responses and failure process of gas-bearing coal under impact load[J]. Soil Dynamics and Earthquake Engineering 142:106579. doi:10.1016/j.soildyn.2021.106579.
  • Li, Y., Z. Wang, S. Tang, D. Elsworth, et al. 2022. Re-evaluating adsorbed and free methane content in coal and its ad-and desorption processes analysis[J]. Chemical Engineering Journal 428:131946. doi:10.1016/j.cej.2021.131946.
  • Li, Y., Y. Wang, J. Wang, Z. Pan, et al. 2020a. Variation in permeability during CO2–CH4 displacement in coal seams: Part 1–experimental insights[J]. Fuel 263:116666. doi:10.1016/j.fuel.2019.116666.
  • Li, Y., J. Yang, Z. Pan, S. MENG, K. WANG, X. NIU, et al. 2019. Unconventional natural gas accumulations in stacked deposits: A discussion of upper Paleozoic coal‐bearing strata in the east margin of the ordos basin, China[J]. Acta Geologica Sinica‐English Edition. 93(1):111–29. doi:10.1111/1755-6724.13767.
  • Li, Y., J. Yang, Z. Pan, W. Tong, et al. 2020b. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images[J]. Fuel 260:116352. doi:10.1016/j.fuel.2019.116352.
  • Li, Y., C. Zhang, D. Tang, Q. Gan, X. Niu, K. Wang, R. Shen, et al. 2017. Coal pore size distributions controlled by the coalification process: An experimental study of coals from the junggar, ordos and qinshui basins in China[J]. Fuel 206:352–63. doi:10.1016/j.fuel.2017.06.028.
  • Liu, J., Z. Chen, D. Elsworth, X. Miao, X. Mao, et al. 2011. Evolution of coal permeability from stress-controlled to displacement-controlled swelling conditions[J]. Fuel. 90(10):2987–97. doi:10.1016/j.fuel.2011.04.032.
  • Liu, S., K. Yang, H. Sun, D. Wang, D. Zhang, X. Li, D. Chen, et al. 2022. Adsorption and deformation characteristics of coal under liquid nitrogen cold soaking[J]. Fuel 316:123026. doi:10.1016/j.fuel.2021.123026.
  • Liu, Y., Z. Zhang, W. Xiong, K. Shen, Q. Ba, et al. 2020. The influence of the injected water on the underground coalbed methane extraction [J]. Energies. 13(5):1151. doi:10.3390/en13051151.
  • Lv, Z., P. Liu, and Y. Zhao. 2021. Experimental study on the effect of gas adsorption on the effective stress of coal under triaxial stress[J]. Transport in Porous Media 137 (2):365–79. doi:10.1007/s11242-021-01564-8.
  • Moffat, D. H., and K. E. Weale. 1955. Sorption by coal of methane at high pressures[J]. Fuel 34 (4):449–62.
  • Mukherjee, D., S. V. A, J. Ganguly, R. E. Masto, et al. 2022. Exploration on microbial load and nutrient source in coal-bed methane produced water[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 44(1):1864–74. doi:10.1080/15567036.2022.2056266.
  • Ö, K. C. 2003. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection[J]. Energy and Fuels 17 (6):1595–608. doi:10.1021/ef0301349.
  • Qianting, H., L. Yunpei, W. Han, Z. Quanle, S. Haitao, et al. 2017. Intelligent and integrated techniques for coalbed methane (CBM) recovery and reduction of greenhouse gas emission[J]. Environmental Science and Pollution Research International. 24(21):17651–68. doi:10.1007/s11356-017-9335-4.
  • S, R. A., P. M. S. A, R. P. G, Y. Ju, V. Vishal, P. N. K. De Silva, et al. 2015. A macro-scale experimental study of sub- and super-critical CO2 flow behaviour in Victorian brown coal[J]. Fuel. 158(oct. 15):864–73. doi:10.1016/j.fuel.2015.06.047.
  • Shi, R., J. Liu, X. Wang, D. Elsworth, Z. Wang, M. Wei, G. Cui. 2021. Experimental observations of gas-sorption-induced strain gradients and their implications on permeability evolution of shale [J]. Rock Mechanics and Rock Engineering. 54(8):3927–43. doi:10.1007/s00603-021-02473-4.
  • Shining, Z. 1984. The result of checking two methods for measuring the permeability of coal seams with computer[J]. Journal of China University of Mining and Technology 13(3): 38–47.
  • Su, X., Q. Wang, H. Lin, J. Song, H. Guo . 2018. A combined stimulation technology for coalbed methane wells: Part 1. Theory and technology[J]. Fuel 233:592–603. doi:10.1016/j.fuel.2018.06.087.
  • Tian, X., D. Song, X. He, Z. Li, H. Liu, W. Wang . 2021. Investigation on micro-surface adhesion of coals and implications for gas occurrence and coal and gas outburst mechanism[J]. Journal of Natural Gas Science and Engineering 94:104115. doi:10.1016/j.jngse.2021.104115.
  • Viete, D. R., and P. G. Ranjith. 2006. The effect of CO2 on the geomechanical and permeability behaviour of brown coal: Implications for coal seam CO2 sequestration[J]. International Journal of Coal Geology 66 (3):204–16. doi:10.1016/j.coal.2005.09.002.
  • Vishal, V., R. P. G, P. S. P, T. N. Singh . 2013. Permeability of sub-critical carbon dioxide in naturally fractured Indian bituminous coal at a range of down-hole stress conditions[J]. Engineering Geology 167:148–56. doi:10.1016/j.enggeo.2013.10.007.
  • Vishal, V., P. G. Ranjith, and T. N. Singh. 2013. CO2 permeability of Indian bituminous coals: Implications for carbon sequestration[J]. International Journal of Coal Geology 105:36–47. doi:10.1016/j.coal.2012.11.003.
  • Wang, R., G. Li, and S. Liu. 2021. Experimental investigation of the matrix pore size distribution and inner surface fractal dimension of different-structure high rank coals [J]. Journal of Nanoscience and Nanotechnology 21 (1):529–37. doi:10.1166/jnn.2021.18516.
  • Wang, K., J. Zang, G. Wang, A. Zhou . 2014. Anisotropic permeability evolution of coal with effective stress variation and gas sorption: Model development and analysis[J]. International Journal of Coal Geology 130:53–65. doi:10.1016/j.coal.2014.05.006.
  • Wu, D., X. Liu, B. Liang, K. Sun, X. Xiao . 2018. Experiments on displacing methane in coal by injecting supercritical carbon dioxide[J]. Energy and Fuels. 32(12):12766–71. doi:10.1021/acs.energyfuels.8b03172.
  • Yang, D., Q. Zeng, L. Wang, Q. Meng, L. He. 2022. Modification characteristics of supercritical carbon dioxide temperature and action time on coal mesostructure[J]. Arabian Journal of Geosciences. 15(7):1–14. doi:10.1007/s12517-022-09909-3.
  • Yangsheng, Z., H. Yaoqing, W. Jingping, Y. Dong. 2003. The experimental approach to effective stress law of coal mass by effect of methane[J]. Transport in Porous Media. 53(3):235–44. doi:10.1023/A:1025080525725.
  • Zhang, X., B. Lin, and J. Shen. 2022. Experimental research on the effect of plasma on the pore-fracture structures and adsorption-desorption of coal body[J]. Fuel 307:121809. doi:10.1016/j.fuel.2021.121809.
  • Zhou, A., K. Wang, J. Hu, J. Hu, X. Fan. . 2022. Experimental research on the law of the deformation and damage characteristics of raw coal/briquette adsorption-instantaneous pressure relief[J]. Fuel 308:122062. doi:10.1016/j.fuel.2021.122062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.