321
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Increasing energy and exergy efficiency in photovoltaic panels by reducing the surface temperature with thermoelectric generators

ORCID Icon & ORCID Icon
Pages 4062-4082 | Received 13 Dec 2021, Accepted 22 Apr 2022, Published online: 16 May 2022

References

  • Aly, S. P., S. Ahzi, and N. Barth. 2019. Effect of physical and environmental factors on the performance of a photovoltaic panel. Solar Energy Materials and Solar Cells 200. doi:10.1016/j.solmat.2019.109948.
  • Aneli, S., R. Arena, and A. Gagliano. 2021. Numerical simulations of a PV module with phase change material (PV-PCM) under variable weather conditions. International Journal of Heat and Technology 39 (2):643–52. doi:10.18280/ijht.390236.
  • Bayrak, F., G. Erturk, and H. F. Oztop. 2017. Effects of partial shading on energy and exergy efficiencies for photovoltaic panels. Journal of Cleaner Production 164:58–69. doi:10.1016/j.jclepro.2017.06.108.
  • Bel Hadj Brahim Kechiche, O., M. Hamza, and H. Sammouda. 2016. Performance comparison of silicon PV module between standard test and real test conditions. In 2016 7th International Renewable Energy Congress (IREC). Hammamet, Tunusia. ISI>://WOS:000386309100105.
  • Benato, A., and A. Stoppato. 2019. An experimental investigation of a novel low-cost photovoltaic panel active cooling system. Energies 12 (8):1448. doi:10.3390/en12081448.
  • Bevilacqua, P., A. Morabito, R. Bruno, V. Ferraro, and N. Arcuri. 2020. Seasonal performances of photovoltaic cooling systems in different weather conditions. Journal of Cleaner 272:122459. doi:10.1016/j.jclepro.2020.122459.
  • Bonab, B. H., and N. Javani. 2019. Investigation and optimization of solar volumetric absorption systems using nanoparticles. Solar Energy Materials and Solar Cells 194:229–34. doi:10.1016/j.solmat.2019.02.019.
  • Coskun, C., Z. Oktay, and I. Dincer. 2011. Estimation of monthly solar radiation distribution for solar energy system analysis. Energy 36 (2):1319–23. doi:10.1016/j.energy.2010.11.009.
  • Enescu, D., and F. Spertino. 2017. Applications of hybrid photovoltaic modules with thermoelectric cooling. 8th International Conference on Sustainability in Energy and Buildings, Seb-16 111:914–23. doi:10.1016/j.egypro.2017.03.253.
  • Fouad, M. M., A. L. Shihata, and I. E. Morgan. 2017. An integrated review of factors influencing the performance of photovoltaic panels. Renewable & Sustainable Energy Reviews 80:1499–511. doi:10.1016/j.rser.2017.05.141.
  • Gao, B., and J. Meng. 2020. High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method. Solar Energy 211:1223–29. doi:10.1016/j.solener.2020.10.045.
  • Haidar, Z. A., J. Orfi, and Z. Kaneesamkand. 2021. Photovoltaic panels temperature regulation using evaporative cooling principle: Detailed theoretical and real operating conditions experimental approaches. Energies 14 (1). doi: 10.3390/en14010145.
  • He, W., J. Zhou, C. Chen, and J. Ji. 2014. Experimental study and performance analysis of a thermoelectric cooling and heating system driven by a photovoltaic/thermal system in summer and winter operation modes. Energy Conversion and Management 84:41–49. doi:10.1016/j.enconman.2014.04.019.
  • He, W., J. Zhou, J. Hou, C. Chen, and J. Ji. 2013. Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar. Applied Energy 107:89–97. doi:10.1016/j.apenergy.2013.01.055.
  • Hepbasli, A. 2008. A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable & Sustainable Energy Reviews 12 (3):593–661. doi:10.1016/j.rser.2006.10.001.
  • Joshi, A. S., A. Tiwari, N. G. Tiwari, I. Dincer, and V. B. Reddy. 2009. Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system. International Journal of Thermal Sciences 48 (1):154–64. doi:10.1016/j.ijthermalsci.2008.05.001.
  • Kalkan, C., M. A. Ezan, J. Duquette, Y. S. Balaman, and A. Yilanci. 2019. Numerical study on photovoltaic/thermal systems with extended surfaces. International Journal of Energy Research 43 (10):5213–29. doi:10.1002/er.4477.
  • Makki, A., S. Omer, and H. Sabir. 2015. Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and Sustainable Energy Reviews 41:658–84. doi:10.1016/j.rser.2014.08.069.
  • Metwally, H., A. N. Mahmoud, W. Aboelsoud, and M. Ezzat. 2021. Yearly performance of the photovoltaic active cooling system using the thermoelectric generator. Case Studies in Thermal Engineering 27:101252. doi:10.1016/j.csite.2021.101252.
  • Naderi, M., M. B. Ziapour, and Y. M. Gendeshmin. 2021. Improvement of photocells by the integration of phase change materials and thermoelectric generators (PV-PCM-TEG) and study on the ability to generate electricity around the clock. Journal of Energy Storage 36:102384. doi:10.1016/j.est.2021.102384.
  • Najafi, H., and K. A. Woodbury. 2013. Optimization of a cooling system based on Peltier effect for photovoltaic cells. Solar Energy 91:152–60. doi:10.1016/j.solener.2013.01.026.
  • Nizetic, S., E. Giama, and A. M. Papadopoulos. 2018. Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, Part II: Active cooling techniques. Energy Conversion and Management 155:301–23. doi:10.1016/j.enconman.2017.10.071.
  • Nizetic, S., F. Grubisic-Cabo, I. Marinic-Kragic, and A. M. Papadopoulos. 2016. Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels. Energy 111:211–25. doi:10.1016/j.energy.2016.05.103.
  • Nizetic, S., M. Jurcevic, D. Coko, and M. Arici. 2021. A novel and effective passive cooling strategy for photovoltaic panel. Renewable & Sustainable Energy Reviews 145. doi:10.1016/j.rser.2021.111164.
  • Nizetic, S., A. M. Papadopoulos, and E. Giama. 2017. Comprehensive analysis and general economic-environmental evaluation of cooling techniques for photovoltaic panels, part I: Passive cooling techniques. Energy Conversion and Management 149:334–54. doi:10.1016/j.enconman.2017.07.022.
  • Parkunam, N., L. Pandiyan, G. Navaneethakrishnan, S. Arul, and V. Vijayan. 2020. Experimental analysis on passive cooling of flat photovoltaic panel with heat sink and wick structure. Energy Sources Part a-Recovery Utilization and Environmental Effects 42 (6):653–63. doi:10.1080/15567036.2019.1588429.
  • Petela, R. 2003. Exergy of undiluted thermal radiation. Solar Energy 74 (6):469–88. doi:10.1016/S0038-092x(03)00226-3.
  • Rosa-Clot, M., P. Rosa-Clot, and G. M. Tina. 2011. TESPI: Thermal electric solar panel integration. Solar Energy 85 (10):2433–42. doi:10.1016/j.solener.2011.07.003.
  • Royne, A., C. J. Dey, and D. R. Mills. 2005. Cooling of photovoltaic cells under concentrated illumination: A critical review. Solar Energy Materials and Solar Cells 86 (4):451–83. https://doi.org/10.1016/j.solmat.2004.09.003.
  • Sahin, A. D., I. Dincer, and A. M. Rosen. 2007. Thermodynamic analysis of solar photovoltaic cell systems. Solar Energy Materials and Solar Cells 91 (2–3):153–59. doi:10.1016/j.solmat.2006.07.015.
  • Shittu, S., G. Li, X. Zhao, J. Zhou, X. Ma, and Y. G. Akhlagli. 2020. Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe. Energy Conversion and Management 207:112515. doi:10.1016/j.enconman.2020.112515.
  • Siecker, J., K. Kusakana, and P. B. Numbi. 2017. A review of solar photovoltaic systems cooling technologies. Renewable & Sustainable Energy Reviews 79:192–203. doi:10.1016/j.rser.2017.05.053.
  • Sudhakar, K., and T. Srivastava. 2014. Energy and exergy analysis of 36 W solar photovoltaic module. International Journal of Ambient Energy 35 (1):51–57. doi:10.1080/01430750.2013.770799.
  • Tina, M. G., and A. Gagliano. 2016. An improved multi-layer thermal model for photovoltaic modules. International Multidisciplinary Conference on Computer and Energy Science (SpliTech) Jul 13, 1–6. Split, Croatia: IEEE.
  • Uchida, K., H. Adachi, T. Kikkawa, A. Kirihara, M. Ishida, S. Yorozu, and E. Saitoh. 2016. Thermoelectric generation based on spin seebeck effects. Proceedings of the IEEE 104 (10):1946–73. doi:10.1109/Jproc.2016.2535167.
  • Ventura, C., G. M. Tina, A. Gagliano, and S. Aneli. 2021. Enhanced models for the evaluation of electrical efficiency of PV/T modules. Solar Energy 224:531–44.
  • Wang, J., F. Xiao, and H. Zhao. 2021. Thermoelectric, piezoelectric and photovoltaic harvesting technologies for pavement engineering. Renewable & Sustainable Energy Reviews 151:111522. doi:10.1016/j.rser.2021.111522.
  • Xu, X., M. Meyers, B. Sammakia, and B. T. Murray. 2012. Thermal modelling of hybrid concentrating PV/T collectors with tree-shaped channel networks cooling system. In 13th IEEE ITHERM Conference, 1131–39. doi: 10.1109/ITHERM.2012.6231550.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.