155
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Studies on diesel engine exhaust gas for retrieving the waste heat through Triple Tube Heat Exchanger (TTHE) through different tubes

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4149-4164 | Received 01 Jan 2022, Accepted 27 Apr 2022, Published online: 13 May 2022

References

  • Ağra, Ö., H. Demir, Ş. Ö. Atayılmaz, F. Kantaş, and A. S. Dalkılıç. 2011. Numerical investigation of heat transfer and pressure drop in enhanced tubes. International Communications in Heat and Mass Transfer 38 (10):1384–91. doi:10.1016/j.icheatmasstransfer.2011.07.013.
  • Bari, S., and S. N. Hossain. 2013. Waste heat recovery from a diesel engine using shell and tube heat exchanger. Applied Thermal Engineering 61 (2):355–63. doi:10.1016/j.applthermaleng.2013.08.020.
  • Giovannoni, V., R. N. Sharma, and R. R. Raine. 2017. Numerical prediction of thermal performances in a concentric triple tube heat exchanger. International Journal of Thermal Sciences 120:86–105. doi:10.1016/j.ijthermalsci.2017.06.003.
  • Gomaa, A., M. A. Halim, and A. M. Elsaid. 2016. Experimental and numerical investigations of a triple concentric-tube heat exchanger. Applied Thermal Engineering 99:1303–15. doi:10.1016/j.applthermaleng.2015.12.053.
  • Gomaa, A., M. A. Halim, and A. M. Elsaid. 2017. Enhancement of cooling characteristics and optimization of a triple concentric-tube heat exchanger with inserted ribs. International Journal of Thermal Sciences 120:106–20. doi:10.1016/j.ijthermalsci.2017.06.002.
  • Hatami, M., D. D. Ganji, and M. Gorji-Bandpy. 2014. A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery. Renewable and Sustainable Energy Reviews 37:168–81. doi:10.1016/j.rser.2014.05.004.
  • Jouhara, H., S. Almahmoud, A. Chauhan, B. Delpech, T. Nannou, S. A. Tassou, R. Llera, F. Lago, and J. J. Arribas. 2017. Experimental investigation on a flat heat pipe heat exchanger for waste heat recovery in steel industry. Energy Procedia 123:329–34. doi:10.1016/j.egypro.2017.07.262.
  • Kumar, K. S., S. Perumal, R. Mohan, and K. Kalidoss. 2016. Numerical Analysis of Triple Concentric Tube Heat Exchanger using Dimpled Tube Geometry. Asian Journal of Research in Social Sciences and Humanities 6 (8):2078–88. doi:10.5958/2249-7315.2016.00732.2.
  • Mohapatra, T., B. N. Padhi, and S. S. Sahoo. 2017. Experimental investigation of convective heat transfer in an inserted coiled tube type three fluid heat exchanger. Applied Thermal Engineering 117:297–307. doi:10.1016/j.applthermaleng.2017.02.023.
  • Perumal, S., R. Mohan, S. Sasidharan, and K. Venkatesh.2017.Study On Concentric Tube Heat Exchanger With Different Nano Fluids For Enhancing The Heat Transfer: A Review.Imperial Journal of Interdisciplinary Research 3 (9):682–88.2454136224541362.
  • Quadir, G. A., I. A. Badruddin, and N. S. Ahmed. 2014. Numerical investigation of the performance of a triple concentric pipe heat exchanger. International Journal of Heat and Mass Transfer 75:165–72. doi:10.1016/j.ijheatmasstransfer.2014.03.042.
  • Quadir, G. A., S. S. Jarallah, N. S. Ahmed, and I. A. Badruddin. 2013. Experimental investigation of the performance of a triple concentric pipe heat exchanger. International Journal of Heat and Mass Transfer 62:562–66. doi:10.1016/j.ijheatmasstransfer.2013.03.033.
  • saravanan, P., and M. raman. 2020. Experimental And Numerical Analysis Of Diesel Engine Exhaust Heat Recovery Using Triple Tube Heat Exchanger. Thermal Science 2020:24; 525–531.
  • Senthilkumar, K., and P. Palanisamy. 2014. Experimental Investigation on Diesel Engine Exhaust Gas Heat Recovery Using a Concentric Tube Heat Exchanger with Transitory Thermal Storage. Australian Journal of Basic and Applied Sciences 8 (7):194–206.
  • Senthilkumar, K., S. Perumal, and P. Palanisamy. 2014. Numerical study on a concentric tube heat exchanger using dimpled tubes with al2o3 nanofluid. Australian Journal Basic and Applied Sciences 8 (7):185–93.
  • Thianpong, C., P. Eiamsa-Ard, K. Wongcharee, and S. Eiamsa-Ard. 2009. Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. International Communications in Heat and Mass Transfer 36 (7):698–704. doi:10.1016/j.icheatmasstransfer.2009.03.026.
  • Tuan Hoang, A., X. Phuong Nguyen, A. Tuan Le, M. Tuan Pham, T. Huan Hoang, A. R. M. Said Al-Tawaha, and S. Yondri. 2021. Power generation characteristics of a thermoelectric modules-based power generator assisted by fishbone-shaped fins: Part II – Effects of cooling water parameters. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Taylor and Francis 43 (3):381–93. doi:10.1080/15567036.2019.1624891.
  • Ünal, A. 1998. Theoretical analysis of triple concentric-tube heat exchangers Part 1: Mathematical modelling. International Communications in Heat and Mass Transfer 25 (7):949–58. doi:10.1016/S0735-1933(98)00086-4.
  • Wilson, J. M. R., A. K. Singh, A. K. Singh, and S. L. R. Ganapathy. 2017. Waste heat recovery from diesel engine using custom designed heat exchanger and thermal storage system with nano enhanced phase change material. Thermal Science 21 (1 Part B):715–27. doi:10.2298/TSCI160426264W.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.