782
Views
3
CrossRef citations to date
0
Altmetric
Review

An extensive review on energy management system for microgrids

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 4203-4228 | Received 03 Mar 2022, Accepted 03 May 2022, Published online: 17 May 2022

References

  • Ahmed, D., M. Ebeed, A. Ali, A. S. Alghamdi, and S. Kamel. 2021. Multi-objective energy management of a micro-grid considering stochastic nature of load and renewable energy resources. Electronics (Switzerland) 10 (4):1–22. doi:10.3390/electronics10040403.
  • Akhtar, I., and S. kirmani. 2021. Design and implementation of model predictive control for microgrid energy system with power quality improvement features. International Journal of Electronics 1–22. doi:10.1080/00207217.2020.1870753.
  • Ali, M. A. Z. M., M. Alanazi, S. Dadfar, and M. Hosein. 2021. An efficient short-term energy management system for a microgrid with renewable power generation and electric vehicles. Neural Computing & Applications. doi:10.1007/s00521-021-06247-5.
  • Amin, A. H., and T. Barati Ali Reza. 2022. Inertia-weight local-search-based TLBO algorithm for energy management in isolated micro-grids with renewable resources. International Journal of Electrical Power & Energy Systems 137:563–69 .
  • Amrollahi, M. H., and S. M. T. Bathaee. 2017. Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Applied Energy 202:66–77. doi:10.1016/j.apenergy.2017.05.116.
  • Anvari-Moghaddam, A., A. Rahimi-Kian, M. S. Mirian, and J. M. Guerrero. 2017. A multi-agent based energy management solution for integrated buildings and microgrid system. Applied Energy 203:41–56. doi:10.1016/j.apenergy.2017.06.007.
  • Arcos-Aviles, D., J. Pascual, F. Guinjoan, L. Marroyo, G. Garcia-Gutierrez, R. Gordillo-Orquera, J. Llanos-Proano, P. Sanchis, and T. E. Motoasca. 2021. an energy management system design using fuzzy logic control: Smoothing the grid power profile of a residential electro-thermal microgrid. IEEE Access 9:25172–88. doi:10.1109/ACCESS.2021.3056454.
  • Arefifar, S. A., M. Ordonez, and Y. A. R. I. Mohamed. 2017. Energy management in multi-microgrid systems - Development and assessment. IEEE Transactions on Power Systems 32 (2):910–22. doi:10.1109/TPWRS.2016.2568858.
  • Asimakopoulou, G. E., A. L. Dimeas, and N. D. Hatziargyriou. 2013. Leader-follower strategies for energy management of multi-microgrids. IEEE Transactions on Smart Grid 4 (4):1909–16. doi:10.1109/TSG.2013.2256941.
  • Askarzadeh, A. 2018a. A memory-based genetic algorithm for optimization of power generation in a microgrid. IEEE Transactions on Sustainable Energy 9 (3):1081–89. doi:10.1109/TSTE.2017.2765483.
  • Askarzadeh, A. 2018b. A memory-based genetic algorithm for optimization of power generation in a microgrid. IEEE Transactions on Sustainable Energy 9 (3):1081–89. doi:10.1109/TSTE.2017.2765483.
  • Azarhooshang, A., D. Sedighizadeh, and M. Sedighizadeh. 2021. Two-stage stochastic operation considering day-ahead and real-time scheduling of microgrids with high renewable energy sources and electric vehicles based on multi-layer energy management system. Electric Power Systems Research 201 (August):107527. doi:10.1016/j.epsr.2021.107527.
  • Azaza, M., and F. Wallin. 2017. Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden. Energy 123:108–18. doi:10.1016/j.energy.2017.01.149.
  • Babqi, A. J. 2022. A novel model predictive control for stability improvement of small scaled zero-inertia multiple DGs micro-grid. Periodica Polytechnica Electrical Engineering and Computer Science. doi:10.3311/PPee.19232.
  • Banerji, A., M. Ieee, K. Bera, D. Ray, D. Paul, and S. Member. 2013. Microgrid: A review. 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), IEEE, 27–35.
  • Barik, A. K., S. Jaiswal, and D. C. Das. 2021. Recent trends and development in hybrid microgrid: A review on energy resource planning and control. International Journal of Sustainable Energy 41:1–15. doi:10.1080/14786451.2021.1910698.
  • Bishwajit, D. S., R. Sheila, and G. Mahapatra Fausto Pedro. 2022. Optimal scheduling of distributed energy resources in microgrid systems based on electricity market pricing strategies by a novel hybrid optimization technique. International Journal of Electrical Power & Energy Systems 134:107419.
  • Bogaraj, T., and J. Kanakaraj. 2016. Intelligent energy management control for independent microgrid. Sadhana - Academy Proceedings in Engineering Sciences 41 (7):755–69. doi:10.1007/s12046-016-0515-6.
  • Boujoudar, Y., M. Azeroual, H. Elmoussaoui, and T. Lamhamdi. 2021. Intelligent control of battery energy storage for microgrid energy management using ANN. International Journal of Electrical and Computer Engineering 11 (4):2760–67. doi:10.11591/ijece.v11i4.pp2760-2767.
  • Campagna, N., M. Caruso, V. Castiglia, R. Miceli, and F. Viola (2020). Energy management concepts for the evolution of smart grids. 8th International Conference on Smart Grid, IcSmartGrid 2020, 208–13. doi:10.1109/icSmartGrid49881.2020.9144909.
  • Chalise, S., J. Sternhagen, T. M. Hansen, and R. Tonkoski. 2016. Energy management of remote microgrids considering battery lifetime. The Electricity Journal 29 (6):1–10. doi:10.1016/j.tej.2016.07.003.
  • Chandak, S., and P. K. Rout. 2021. The implementation framework of a microgrid: A review. International Journal of Energy Research 45 (3):3523–47. doi:10.1002/er.6064.
  • Chaouachi, A., R. M. Kamel, R. Andoulsi, and K. Nagasaka. 2013. Multiobjective intelligent energy management for a microgrid. IEEE Transactions on Industrial Electronics 60 (4):1688–99. doi:10.1109/TIE.2012.2188873.
  • Chen, Y. K., W. Yung-Chun, C.-C. Song, and Y.-S. Chen. 2013. Design and implementation of energy management system with fuzzy control for DC microgrid systems. IEEE TRANSACTIONS ON POWER ELECTRONICS 28 (4):1563–70. doi:10.1109/TPEL.2012.2210446.
  • Chiñas-Palacios, C., C. Vargas-Salgado, J. Aguila-Leon, and E. Hurtado-Pérez. 2021. A cascade hybrid PSO feed-forward neural network model of a biomass gasification plant for covering the energy demand in an AC microgrid. Energy Conversion and Management 232:113896. November 2020. doi:10.1016/j.enconman.2021.113896.
  • Choudar, A., D. Boukhetala, S. Barkat, and J. M. Brucker. 2015. A local energy management of a hybrid PV-storage based distributed generation for microgrids. Energy Conversion and Management 90:21–33. doi:10.1016/j.enconman.2014.10.067.
  • CIGRE WG C6.22. 2015. Microgrids 1: Engineering, economics, & experience capabilities, benefits, business opportunities, and examples microgrids evolution roadmap. Electra 283: 71–75.
  • Climate change report card: These countries are reaching targets. Retrieved 2021, June 28. https://www.nationalgeographic.com/environment/article/climate-change-report-card-co2-emissions
  • Comodi, G., A. Giantomassi, M. Severini, S. Squartini, F. Ferracuti, A. Fonti, D. Nardi Cesarini, M. Morodo, and F. Polonara. 2015. Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies. Applied Energy 137:854–66. doi:10.1016/j.apenergy.2014.07.068.
  • Creating a sustainable world. (2022). Retrieved 2022, January 23. https://www.investindia.gov.in/sector/renewable-energy#:~:text=Thecountryhassetan,to500GWby2030 .
  • Daniel, E. O., I. E. E. E. Student Member, A. C. Claudio, I. Fellow, K. Mehrdad, and I. Senior Member. 2013. A centralized energy management system for isolated microgrids. IEEE transactions on smart grid 5(4):1864–1875.
  • De Santis, E., A. Rizzi, and A. Sadeghian. 2017. Hierarchical genetic optimization of a fuzzy logic system for energy flows management in microgrids. Applied Soft Computing Journal 60:135–49. doi:10.1016/j.asoc.2017.05.059.
  • De, M., G. Das, and K. K. Mandal. 2021. An effective energy flow management in grid-connected solar – Wind-microgrid system incorporating economic and environmental generation scheduling using a meta-dynamic approach-based multiobjective flower pollination algorithm. Energy Reports 7:2711–26. doi:10.1016/j.egyr.2021.04.006.
  • Dey, B., B. Bhattacharyya, and F. P. G. Márquez. 2021. A hybrid optimization-based approach to solve environment constrained economic dispatch problem on microgrid system. Journal of Cleaner Production 307 (January):127196. doi:10.1016/j.jclepro.2021.127196.
  • Díaz, N. L., A. C. Luna, J. C. Vasquez, and J. M. Guerrero. 2017. Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded AC microgrids. IEEE Transactions on Power Electronics 32 (7):5202–13. doi:10.1109/TPEL.2016.2606653.
  • DICOPT - GAMS. (2021). Retrieved 2021, November 11. https://www.gams.com/33/docs/S_DICOPT.html
  • Dou, C. X., and B. Liu. 2013. Multi-agent based hierarchical hybrid control for smart microgrid. IEEE Transactions on Smart Grid 4 (2):771–78. doi:10.1109/TSG.2012.2230197.
  • Dufo-López, R., L. A. Fernández-Jiménez, I. J. Ramírez-Rosado, J. S. Artal-Sevil, J. A. Domínguez-Navarro, and J. L. Bernal-Agustín. 2017. Daily operation optimisation of hybrid stand-alone system by model predictive control considering ageing model. Energy Conversion and Management 134:167–77. doi:10.1016/j.enconman.2016.12.036.
  • Ei-Bidairi, K. S., H. D. Nguyen, S. D. G. Jayasinghe, and T. S. Mahmoud (2018). Multiobjective intelligent energy management optimization for grid-connected microgrids. Proceedings - 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018, Piscataway, New Jersey. doi:10.1109/EEEIC.2018.8493751.
  • Elsied, M., A. Oukaour, H. Gualous, and R. Hassan. 2015. Energy management and optimization in microgrid system based ongreen energy. Energy 84:139–51. doi:10.1016/j.energy.2015.02.108.
  • Emanue, B., M. M. Marcelo, P. R. Mendes, J. E. Normey-Rico, and E. J. Adam. 2021. Fault-tolerant energy management for an industrial microgrid: A compact optimization method. International Journal of Electrical Power & Energy Systems 124:787–804 .
  • Fahad, M., E. Elbouchikhi, and M. Benbouzid. 2018. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Applied Energy 222 (April):1033–55. doi:10.1016/j.apenergy.2018.04.103.
  • Farzin, H., M. Fotuhi-Firuzabad, and M. Moeini-Aghtaie. 2017. Stochastic energy management of microgrids during unscheduled islanding period. IEEE Transactions on Industrial Informatics 13 (3):1079–87. doi:10.1109/TII.2016.2646721.
  • Farzin, H., S. Member, M. Fotuhi-firuzabad, and M. Moeini-. 2016. Stochastic energy management of microgrids during unscheduled islanding period. IEEE Transactions on Industrial Informatics 32031–9. doi:10.1109/TII.2016.2646721.
  • Flexible, C., and E. Sources. 2019. A survey on microgrid energy management considering flexible energy sources. Energies 12:1–26.
  • Gamez Urias, M. E., E. N. Sanchez, and L. J. Ricalde. 2015. Electrical microgrid optimization via a new recurrent neural network. IEEE Systems Journal 9 (3):945–53. doi:10.1109/JSYST.2014.2305494.
  • GAMS - A high level modeling system for mathematical programming. (2021). Retrieved 2021, November 12. https://www.gams.com/products/gams/gams-language/
  • Garcia-Torres, F., and C. Bordons. 2015. Optimal economical schedule of hydrogen-based microgrids with hybrid storage using model predictive control. IEEE Transactions on Industrial Electronics 62 (8):5195–207. doi:10.1109/TIE.2015.2412524.
  • Golshannavaz, S., S. Afsharnia, and P. Siano. 2016. A comprehensive stochastic energy management system in reconfigurable microgrids. International Journal of Energy Research 40 (11):1518–31. doi:10.1002/er.3536.
  • Golshannavaz Sajjad, and P. S. Saeed Afsharnia. 2016. A comprehensive stochastic energy management system in reconfigurable microgrids. International Journal of Energy Resesarch 40 (11):1518–31.
  • Gomes, I. L. R., R. Melicio, and V. M. F. Mendes. 2021. A novel microgrid support management system based on stochastic mixed-integer linear programming. Energy 223:120030. doi:10.1016/j.energy.2021.120030.
  • Green, M. 2016. Community power. Nature Energy 1 (February:1–4. doi:10.1038/NENERGY.2016.14.
  • Guo, Y., and Z. C. 2016. Islanding-aware robust energy management for microgrids. IEEE Transactions on Smart Grid 9 (2):1301–1309. doi:10.1109/TSG.2016.2585092.
  • Hajiamoosha, P., A. Rastgou, S. Bahramara, and S. M. Bagher Sadati. 2021. Stochastic energy management in a renewable energy-based microgrid considering demand response program. International Journal of Electrical Power and Energy Systems 129 (June 2020):106791. doi:10.1016/j.ijepes.2021.106791.
  • Helal, S. A., M. O. Hanna, R. J. Najee, M. F. Shaaban, A. H. Osman, and M. S. Hassan. 2019. Energy management system for smart hybrid AC/DC microgrids in remote communities. Electric Power Components and Systems 47 (11–12):1012–24. doi:10.1080/15325008.2019.1629512.
  • Homer Pro. (n.d.) Retrieved 2021, October 16. https://www.homerenergy.com/products/pro/index.html
  • Hossain, M. A., R. K. Chakrabortty, M. J. Ryan, and H. R. Pota. 2021. Energy management of community energy storage in grid-connected microgrid under uncertain real-time prices. Sustainable Cities and Society 66 (June 2020):102658. doi:10.1016/j.scs.2020.102658.
  • Hu, M., S. Lu, and Y. Chen. 2016. Stochastic programming and market equilibrium analysis of microgrids energy management systems. Energy 113:662–70. doi:10.1016/j.energy.2016.07.061.
  • Hui, L., L. Fang, and C. Dihuang. 2021. A novel wind DC microgrid energy management strategy based on LSTM forecast model. Journal of Physics. Conference Series 1871 (1). doi: 10.1088/1742-6596/1871/1/012014.
  • IBM ILOG CPLEX SOLVERS. (n.d.) Retrieved August 13, 2021, from https://www.mathworks.com/products/connections/product_detail/Ibm-ilog-cplex.html
  • IEC 61970. (n.d.) Retrieved August 25, 2021, from https://en.wikipedia.org/wiki/IEC_61970
  • İpek, Ç. B., and D. Tamyürek Mehmet. 2021. Sizing optimization and design of an autonomous AC microgrid for commercial loads using Harris Hawks optimization algorithm. Journal of Energy Conversion and Management 245:631–53.
  • Jabari, F. 2021. Optimization of a tidal-battery-diesel driven energy-efficient standalone microgrid considering the load-curve flattening program. June 1–15. doi:10.1002/2050-7038.12993.
  • Jadav, K. A., H. M. Karkar, and I. N. Trivedi. 2017. A review of microgrid architectures and control strategy. Journal of the Institution of Engineers (India): Series B 98 (6):591–98. doi:10.1007/s40031-017-0287-3.
  • Jalili, M., M. Sedighizadeh, and A. S. Fini. 2021. Stochastic optimal operation of a microgrid based on energy hub including a solar-powered compressed air energy storage system and an ice storage conditioner. Journal of Energy Storage 33 November 2020:102089. doi:10.1016/j.est.2020.102089.
  • Ji, Y., J. Wang, J. Xu, and D. Li. 2021. Data-driven online energy scheduling of a microgrid based on deep reinforcement learning. Energies 14 (8):2120. doi:10.3390/en14082120.
  • Jirapong, B. J., and B. Maneeratpongsuk David. 2021. Model predictive control of microgrid energy management system with optimal power flow constraints using second order cone programming. Journal of Smart Electrical Systems and Technology. doi:10.1109/ECTI-CON51831.2021.9454847.
  • Jirdehi, M. A., V. S. Tabar, S. Ghassemzadeh, and S. Tohidi. 2020. Different aspects of microgrid management: A comprehensive review. Journal of Energy Storage 30 (April):101457. doi:10.1016/j.est.2020.101457.
  • Karavas, C. S., G. Kyriakarakos, K. G. Arvanitis, and G. Papadakis. 2015. A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Conversion and Management 103:166–79. doi:10.1016/j.enconman.2015.06.021.
  • Kim, H. J., M. K. Kim, and J. W. Lee. 2021. A two-stage stochastic p-robust optimal energy trading management in microgrid operation considering uncertainty with hybrid demand response. International Journal of Electrical Power & Energy Systems 124:106422. doi:10.1016/j.ijepes.2020.106422.
  • Kumar, K. P., and B. Saravanan. 2019. Day ahead scheduling of generation and storage in a microgrid considering demand side management. Journal of Energy Storage 21 November 2018:78–86. doi:10.1016/j.est.2018.11.010.
  • Kyriakarakos, G., A. I. Dounis, K. G. Arvanitis, and G. Papadakis. 2012. A fuzzy logic energy management system for polygeneration microgrids. Renewable Energy 41:315–27. doi:10.1016/j.renene.2011.11.019.
  • Lasseter, R., A. Akhil, C. Marnay, and J. Ste (2002). Consortium for electric reliability technology solutions white paper on integration of distributed energy resources the microgrid concept. April.
  • Leonori, S., A. Rizzi, M. Paschero, and F. M. F. Mascioli (2018). Microgrid energy management by ANFIS supported by an ESN based prediction algorithm. Proceedings of the International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 2018-July. doi:10.1109/IJCNN.2018.8489018.
  • Li, H., A. T. Eseye, J. Zhang, and D. Zheng. 2017. Optimal energy management for industrial microgrids with high-penetration renewables. Protection and Control of Modern Power Systems 2 (1):1–14. doi:10.1186/s41601-017-0040-6.
  • Liu, N., X. Yu, C. Wang, and J. Wang. 2017. Energy sharing management for microgrids with PV prosumers: A stackelberg game approach. IEEE Transactions on Industrial Informatics 13 (3):1088–98. doi:10.1109/TII.2017.2654302.
  • Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, Taipei, Taiwan, Province of China 284–89. doi:10.1109/cacsd.2004.1393890.
  • Lujano-Rojas, J. M., C. Monteiro, R. Dufo-López, and J. L. Bernal-Agustín. 2012. Optimum load management strategy for wind/diesel/battery hybrid power systems. Renewable Energy 44:288–95. doi:10.1016/j.renene.2012.01.097.
  • Luo, Z., Z. Wu, Z. Li, H. Cai, B. Li, and W. Gu. 2017. A two-stage optimization and control for CCHP microgrid energy management. Applied Thermal Engineering 125:513–22. doi:10.1016/j.applthermaleng.2017.05.188.
  • Ma, L., N. Liu, J. Zhang, W. Tushar, and C. Yuen. 2016. Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: A game theoretic approach. IEEE Transactions on Industrial Informatics 12 (5):1930–42. doi:10.1109/TII.2016.2578184.
  • Madad, K. P., N. AminS, and M. Afari Majid. 2022. Robust optimal scheduling of CHP-based microgrids in presence of wind and photovoltaic generation units: An IGDT approach. Sustainable Cities and Society 78:103566.
  • Mah, A. X. Y., W. S. Ho, M. H. Hassim, H. Hashim, G. H. T. Ling, C. S. Ho, and Z. Ab Muis. 2021. Optimization of a standalone photovoltaic-based microgrid with electrical and hydrogen loads. Journal of Energy 235. doi:10.1016/j.energy.2021.121218.
  • Majumder, I., P. K. Dash, and S. Dhar. 2021. Real-time energy management for PV–battery–wind based microgrid using on-line sequential kernel based robust random vector functional link network. Applied Soft Computing 101:107059. doi:10.1016/j.asoc.2020.107059.
  • Marquez, J. J., A. Zafra-Cabeza, C. Bordonsa Miguel, and A. Ridao. 2021. A fault detection and reconfiguration approach for MPC-based energy management in an experimental microgrid. Journal of Control Engineering Practice 107. doi:10.1016/j.conengprac.2020.104695.
  • Marzband, M., M. Ghadimi, A. Sumper, and J. L. Domínguez-García. 2014. Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode. Applied Energy 128:164–74. doi:10.1016/j.apenergy.2014.04.056.
  • Marzband, M., S. S. Ghazimirsaeid, H. Uppal, and T. Fernando. 2017. A real-time evaluation of energy management systems for smart hybrid home Microgrids. Electric Power Systems Research 143:624–33. doi:10.1016/j.epsr.2016.10.054.
  • Mauricio, R., C. A. Cañizaresa, J. W. S. P, and P. Su. 2021. Optimization- and rule-based energy management systems at the Canadian renewable energy laboratory microgrid facility. Journal of Applied Energy 290:498–509.
  • Mendes, P. R. C., L. Valverde, C. Bordons, and J. E. Normey-rico. 2016. Energy management of an experimental microgrid coupled to a V2G system. Journal of Power Sources 327:702–13. doi:10.1016/j.jpowsour.2016.07.076.
  • Meng, L., E. Riva, A. Luna, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero. 2016. Microgrid supervisory controllers and energy management systems: A literature review. Renewable and Sustainable Energy Reviews 60:1263–73. doi:10.1016/j.rser.2016.03.003.
  • Merabet, A., K. T. Ahmed, H. Ibrahim, R. Beguenane, and A. M. Ghias. 2017. Energy management and control system for laboratory scale microgrid based wind-PV-battery. IEEE Transactions on Sustainable Energy 8 (1):145–54. doi:10.1109/TSTE.2016.2587828.
  • Moghaddam, A. A., A. Seifi, T. Niknam, and M. R. Alizadeh Pahlavani. 2011. Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 36 (11):6490–507. doi:10.1016/j.energy.2011.09.017.
  • Mohamed, F. A., and H. N. Koivo. 2011. Multiobjective optimization using modified game theory for online management of microgrid. European Transactions on Electrical Power 21 September 2010:839–54. doi:10.1002/etep
  • Mondal, A., S. Misra, L. S. Patel, S. K. Pal, and M. S. Obaidat. 2018. DEMANDS: Distributed energy management using noncooperative scheduling in smart grid. IEEE Systems Journal 12 (3):2645–53. doi:10.1109/JSYST.2017.2723961.
  • Moradzadeh, A., H. Moayyed, S. Zakeri, B. Mohammadi-Ivatloo, and A. P. Aguiar. 2021. Deep learning-assisted short-term load forecasting for sustainable management of energy in microgrid. Inventions 6 (1):1–11. doi:10.3390/inventions6010015.
  • Mosa, M. A., and A. A. Ali. 2021. Energy management system of low voltage dc microgrid using mixed-integer nonlinear programming and a global optimization technique. Electric Power Systems Research 192 (November):106971. doi:10.1016/j.epsr.2020.106971.
  • Motevasel, M., A. R. Seifi, and T. Niknam. 2013. Multi-objective energy management of CHP (combined heat and power)-based micro-grid. Energy 51:123–36. doi:10.1016/j.energy.2012.11.035.
  • Naja, J., A. Peiravi, A. Anvari-moghaddam, and J. M. Guerrero. 2020. An efficient interactive framework for improving resilience of power-water distribution systems with multiple privately-owned microgrids. International Journal of Electrical Power & Energy Systems 116 May 2018. doi:10.1016/j.ijepes.2019.105550.
  • Nan, Y. R., A. Houssem, J. Alireza, and M. Rezvani Martin. 2021. A day-ahead joint energy management and battery sizing framework based on θ-modified krill herd algorithm for a renewable energy-integrated microgrid. Journal of Cleaner Production 282:859–73.
  • Nikkhah, S., M. A. Nasr, and A. Rabiee. 2021. A stochastic voltage stability constrained EMS for isolated microgrids in the presence of PEVs using a coordinated UC-OPF framework. IEEE Transactions on Industrial Electronics 68 (5):4046–55. doi:10.1109/TIE.2020.2987271.
  • Nunna, H. K., and S. Doolla. 2013. Energy management in microgrids using demand response and distributed storage – A multiagent approach. IEEE Transactions on Power Delivery 28 (2):939–47. doi:10.1109/TPWRD.2013.2239665.
  • Nwulu, N. I., and X. Xia. 2017. Optimal dispatch for a microgrid incorporating renewables and demand response. Renewable Energy 101:16–28. doi:10.1016/j.renene.2016.08.026.
  • Olivares, D. E., A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, et al. 2014. Trends in microgrid control. IEEE Transactions on Smart Grid 5 (4):1905–19. doi:10.1109/TSG.2013.2295514.
  • Perez-Flores, A. C., J. D. M. Antonio, V. H. Olivares-Peregrino, H. R. Jimenez-Grajales, A. Claudio-Sanchez, and G. V. G. Ramirez. 2021. Microgrid energy management with asynchronous decentralized particle swarm optimization. IEEE Access 9:69588–600. doi:10.1109/ACCESS.2021.3078335.
  • Prodan, I., and E. Zio. 2014. A model predictive control framework for reliable microgrid energy management. International Journal of Electrical Power And Energy Systems 61:399–409. doi:10.1016/j.ijepes.2014.03.017.
  • Quynh, N. V., Z. M. Ali, M. M. Alhaider, A. Rezvani, and K. Suzuki. 2021. Optimal energy management strategy for a renewable-based microgrid considering sizing of battery energy storage with control policies. International Journal of Energy Research 45 (4):5766–80. doi:10.1002/er.6198.
  • Rezaei, N., and M. Kalantar. 2015. Stochastic frequency-security constrained energy and reserve management of an inverter interfaced islanded microgrid considering demand response programs. International Journal of Electrical Power and Energy Systems 69:273–86. doi:10.1016/j.ijepes.2015.01.023.
  • Roustaee, M., and A. Kazemi. 2021. Multi-objective stochastic operation of multi-microgrids constrained to system reliability and clean energy based on energy management system. Electric Power Systems Research 194 (August 2020):106970. doi:10.1016/j.epsr.2020.106970.
  • Shahgholian, G. 2021. A brief review on microgrids: Operation, applications, modeling, and control. International Transactions on Electrical Energy Systems 31 (6):1–28. doi:10.1002/2050-7038.12885.
  • Shen, J., C. Jiang, Y. Liu, and J. Qian. 2016. A microgrid energy management system with demand response for providing grid peak shaving. Electric Power Components and Systems 44 (8):843–52. doi:10.1080/15325008.2016.1138344.
  • Singh, R., S. Muhammad, and M. S. J. Asghar. 2021. Supervisory control strategy for the effective solar energy utilization in a residential microgrid system using a cost-effective controller. International Journal of Electrical Power and Energy Systems 132 November 2020:107170. doi:10.1016/j.ijepes.2021.107170.
  • Small Scale Microgrid model using MATLAB. (n.d.) Retrieved August 12, 2021, from https://www.mathworks.com/help/physmod/sps/ug/simplified-model-of-a-small-scale-micro-grid.html
  • Solanki, B. V., K. Bhattacharya, and C. A. Canizares. 2017. A sustainable energy management system for isolated microgrids. IEEE Transactions on Sustainable Energy 8 (4):1507–17. doi:10.1109/TSTE.2017.2692754.
  • Solanki, B. V., A. Raghurajan, K. Bhattacharya, and C. A. Canizares. 2017. Including smart loads for optimal demand response in integrated energy management systems for isolated microgrids. IEEE Transactions on Smart Grid 8 (4):1739–48. doi:10.1109/TSG.2015.2506152.
  • Střelec, M., and J. Berka (2013). Microgrid energy management based on approximate dynamic programming. 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013, Istanbul, 1–5. doi:10.1109/ISGTEurope.2013.6695439.
  • Sukumar, S., H. Mokhlis, S. Mekhilef, K. Naidu, and M. Karimi. 2017. Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid. Energy 118:1322–33. doi:10.1016/j.energy.2016.11.018.
  • Syeda, S., A. R. Zehra, and A. Iftikhar. 2022. Fuzzy-barrier sliding mode control of electric-hydrogen hybrid energy storage system in DC microgrid: Modelling, management and experimental investigation. Energy 232 (Part D):433–451.
  • Tabar, V. S., M. A. Jirdehi, and R. Hemmati. 2017. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option. Energy 118:827–39. doi:10.1016/j.energy.2016.10.113.
  • Taha, M. S., and Y. A. R. I. Mohamed (2016). Robust MPC-based energy management system of a hybrid energy source for remote communities. 2016 IEEE Electrical Power and Energy Conference, EPEC 2016, Ontario,Canada. doi:10.1109/EPEC.2016.7771706.
  • Tsao, Y. C., and V. V. Thanh. 2021. Toward blockchain-based renewable energy microgrid design considering default risk and demand uncertainty. Renewable Energy 163:870–81. doi:10.1016/j.renene.2020.09.016.
  • Valencia, F., J. Collado, D. Sáez, and L. G. Marín. 2015. Robust energy management system for a microgrid based on a fuzzy prediction interval model. IEEE Transactions on Smart Grid 7:1–9.
  • Veluchamy, K. 2021. A new energy management technique for microgrid system using muddy soil fish optimization algorithm. March 1–21. doi:10.1002/er.6758.
  • Venayagamoorthy, G. K., R. K. Sharma, P. K. Gautam, and A. Ahmadi. 2016. Dynamic energy management system for a smart microgrid. IEEE Transactions on Neural Networks and Learning Systems 27 (8):1643–56. doi:10.1109/TNNLS.2016.2514358.
  • Wang, C., Z. Zhang, O. Abedinia, and S. G. Farkoush. 2021. Modeling and analysis of a microgrid considering the uncertainty in renewable energy resources, energy storage systems and demand management in electrical retail market. Journal of Energy Storage 33 (November):102111. doi:10.1016/j.est.2020.102111.
  • Wasilewski, J. 2018. Optimisation of multicarrier microgrid layout using selected metaheuristics. International Journal of Electrical Power and Energy Systems 99 (504):246–60. doi:10.1016/j.ijepes.2018.01.022.
  • Xiang, Y., H. Cai, J. Liu, and X. Zhang. 2021. Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution. Applied Energy 283 November 2020:116374. doi:10.1016/j.apenergy.2020.116374.
  • Xiang, Y., J. Liu, and Y. Liu. 2016. Robust energy management of microgrid with uncertain renewable generation and load. IEEE Transactions on Smart Grid 7 (2):1034–43.
  • Xing, H. X., and W. Liang Hui. 2021. Distributed neurodynamic algorithm for multi-objective problem optimization and its applications to isolated micro-grid energy management. Journal of Sustainable Cities and Society 70:981–97.
  • Yang, J., and C. Su. 2021. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty. Energy 223:120043. doi:10.1016/j.energy.2021.120043.
  • Yang, J., C. Su, and Z. Wang. 2021. Adaptive robust optimal dispatch of microgrid based on different robust adjustment parameters. IET Generation, Transmission and Distribution (August):1–12. doi:10.1049/gtd2.12270.
  • Yu, M., Y. Wang, and Y. G. Li (2015). Energy management of wind turbine-based dc microgrid utilizing modified differential evolution algorithm. IET Conference Publications, Beijing, China, 2015(CP679). doi:10.1049/cp.2015.0417.
  • Zeinal-kheiri, S., A. M. Shotorbani, A. Khardenavis, B. Mohammadi-ivatloo, R. Sadiq, and K. Hewage. 2021. An adaptive real-time energy management system for a renewable energy-based microgrid. IET Renewable Power Generation 15:May 2020 2918–30. doi:10.1049/rpg2.12223.
  • Zhang, Y., N. Gatsis, and G. B. Giannakis. 2013. Robust energy management for microgrids with high-penetration renewables. IEEE Transactions on Sustainable Energy 4 (4):944–53. doi:10.1109/TSTE.2013.2255135.
  • Zografou-Barredo, N. M., C. Patsios, I. Sarantakos, P. Davison, S. L. Walker, and P. C. Taylor. 2021. MicroGrid resilience-oriented scheduling: A Robust MISOCP model. IEEE Transactions on Smart Grid 12 (3):1867–79. doi:10.1109/TSG.2020.3039713.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.