399
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The synthesis of novel porous graphene anodes for fast charging and improved electrochemical performance for lithium-ion batteries

, , , , , & show all
Pages 4349-4363 | Received 16 Dec 2021, Accepted 29 Apr 2022, Published online: 17 May 2022

References

  • Aghamohammadi, H., and R. Eslami-Farsani. 2020. An experimental investigation on the sulfur and nitrogen co-doping and oxidation of prepared graphene by electrochemical exfoliation of pencil graphite rods. Ceramics International 46 (18):28860–69. doi:10.1016/j.ceramint.2020.08.052.
  • Andersen, H. F., C. E. L. Foss, J. Voje, R. Tronstad, T. Mokkelbost, P. E. Vullum, A. Ulvestad, M. Kirkengen, J. P. Mæhlen. 2019. Silicon-Carbon composite anodes from industrial battery grade silicon. Scientific Reports 9 (1):1–9. doi:10.1038/s41598-019-51324-4.
  • Bing, M., R. D. Rodriguez, A. Ruban, S. Pavlov, E. Sheremet. 2019. The correlation between electrical conductivity and second-order raman modes of laser-reduced graphene oxide. Physical Chemistry Chemical Physics 21 (19):10125–34. doi:10.1039/c9cp00093c.
  • Chang, L., W. Wei, K. Sun, Y. H. Hu. 2015. 3D flower-structured graphene from CO 2 for supercapacitors with ultrahigh areal capacitance at high current density. Journal of Materials Chemistry A. 3(19):10183–87. doi:10.1039/C5TA01055A.
  • Chen, X., Shen, W, Vo, T.T, Cao, Z, Kapoor, A. An overview of lithium-ion batteries for electric vehicles. 10th International Power and Energy Conference, Vietnam, IPEC 2012, IEEE, 230–35, 2012. doi:10.1109/ASSCC.2012.6523269.
  • Chen, L., T. Ji, L. Mu, J. Zhu. 2017. Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–48. doi:10.1016/j.carbon.2016.10.054.
  • Fang, M. D., T.-H. Ho, J.-P. Yen, Y.-R. Lin, J.-L. Hong, S.-H. Wu, J.-J. Jow. 2015. Preparation of advanced carbon anode materials from mesocarbon microbeads for use in high c-rate lithium ion batteries. Materials 8 (6):3550–61. doi:10.3390/ma8063550.
  • Gadipelli, S., and Z. Xiao Guo. 2015. Graphene-based materials: Synthesis and gas sorption, storage and separation. Progress in Materials Science 69:1–60. doi:10.1016/j.pmatsci.2014.10.004.
  • Goriparti, S., E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia. 2014. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 257:421–43. doi:10.1016/j.jpowsour.2013.11.103.
  • Heidari, E. K., Gol, A.K, Sohi, M.H, Ataie, A. 2018. Electrode materials for lithium ion batteries : A review. Journal of Ultrafine Grained and Nanostructured Materials 51(1): 1–12. doi:10.22059/JUFGNSM.2018.01.01.
  • Hoang, A. T., Nižetić, S, Ng, K.H, Papadopoulos, A.M, Le, A.T, Kumar, S, Hadiyanto, H, Pham, V.V. 2022. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere 287. doi:10.1016/j.chemosphere.2021.132285.
  • Jiang, L., G. W. Nelson, H. Kim, I. N. Sim, S. O. Han, J. S. Foord. 2015. Cellulose‐derived supercapacitors from the carbonisation of filter paper. ChemistryOpen. 4(5):586–89. doi:10.1002/open.201500150.
  • Julien, C., and S. Stoynov. 2009. Materials for lithium-ion batteries. Journal of the American College of Cardiology 53 (6). doi: 10.1016/j.jacc.2009.01.003.
  • Khalili, D. 2016. Graphene Oxide : A promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen Peroxide/KSCN in water department of chemistry, college of sciences, Shiraz University, Shiraz 7. New Journal of Chemistry. 40(3):1–11.
  • Leng, F., C. M. Tan, M. Pecht. 2015. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Scientific Reports 5 (1):1–12 . doi:10.1038/srep12967.
  • Liang, J., Y. Xu, H. Sun, X. Xu, T. Liu, H. Liu, H. Wang. 2020. Vacuum‐dried 3D holey graphene frameworks enabling high mass loading and fast charge transfer for advanced batteries. Energy Technology. 8(3):1901002. doi:10.1002/ente.201901002.
  • Libich, J., J. Máca, J. Vondrák, O. Čech, M. Sedlaříková. 2018. Supercapacitors: Properties and applications. Journal of Energy Storage 17 (March):224–27. doi:10.1016/j.est.2018.03.012.
  • Lin, C., A. Tang, N. Wu, J. Xing. 2016. Electrochemical and mechanical failure of graphite-based anode materials in Li-ion batteries for electric vehicles. Journal of Chemistry 2016:1–7. doi:10.1155/2016/2940437.
  • Machedon-Pisu, M., and P. Nicolae Borza. 2020. Are personal electric vehicles sustainable? A Hybrid E-Bike case study. Sustainability (Switzerland) 12 (1):1–24. doi:10.3390/SU12010032.
  • Miao, Y., P. Hynan, A. von Jouanne, A. Yokochi. 2019. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies 12 (6):1–20. doi:10.3390/en12061074.
  • Pei, S., and H. Ming Cheng. 2012. The reduction of graphene oxide. Carbon 50 (9):3210–28. doi:10.1016/j.carbon.2011.11.010.
  • Sahoo, B., Chary , N., Paul, J. 2019. Tribological characteristics of Aluminium-CNT/Graphene/graphite surface nanocomposites: A comparative study. Surface Topography: Metrology and Properties 7(3). doi: 10.1088/2051-672X/ab3025.
  • Seehra, M. S., U. K. Geddam, D. Schwegler-Berry, A. B. Stefaniak. 2015. Detection and quantification of 2H and 3R phases in commercial graphene-based materials. Carbon 95:818–23. doi:10.1016/j.carbon.2015.08.109.
  • Shi, C., Xiang, A., Zhu, Y., Chen, X., Zhou, W., Chen, H. 2017 Nb2O5 nanospheres/surface-modified graphene composites as superior anode materials in lithium ion batteries. Ceramics International 43(8):81. doi:10.1016/j.ceramint.2017.02.021.
  • Thema, F. T., Moloto, M.J., Dikio, E.D., Nyangiwe, N.N., Kotsedi, L., Maaza, M., Khenfouch, M. 2013. Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. Journal of Chemistry 3. doi:10.1155/2013/150536.
  • Wang, G., Y. Minghao, J. Wang. 2018. Self-activating, capacitive anion intercalation enables high-power graphite cathodes. Advanced Materials 30(20). doi: 10.1002/adma.201800533.
  • Wang, G., Y. Minghao, and X. Feng. 2021. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Reviews 50 (4):2388–443. doi:10.1039/d0cs00187b.
  • Xiong, C., B. Li, X. Lin, H. Liu, Y. Xu, J. Mao, C. Duan, T. Li, Y. Ni. 2019. The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor. Composites Part B: Engineering 165 (September):10–46. doi:10.1016/j.compositesb.2018.11.085.
  • Xixi, J., Y. Mu, J. Liang, T. Jiang, J. Zeng, Z. Lin, Y. Lin, J. Yu. 2021. High yield production of 3d graphene powders by thermal chemical vapor deposition and application as highly efficient conductive additive of lithium ion battery electrodes. Carbon 176:21–30. doi:10.1016/j.carbon.2021.01.128.
  • Yang, K., Cheng , B., Zhu, L. 2015. Graphene-coated materials using silica particles as a framework for highly efficient removal of aromatic pollutants in water. Scientific Reports 5 (June):1–12. doi:10.1038/srep11641.
  • Yao, J., G. X. Wang, J.-H. Ahn, H. K. Liu, S. X. Dou. 2003. Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells. Journal of Power Sources 114 (2):292–97. doi:10.1016/S0378-7753(02)00585-2.
  • Yetri, Y., A. T. Hoang, D. Dahlan, E. Taer, M. Q. Chau. 2020. Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 1–15. doi:10.1080/15567036.2020.1811433.
  • Zeng, H., Xing, B., Chen, L., Yi, G., Huang , G., Yaun, R., Zhang, C., Cao, Y., Chen, Z. et al. 2019. Nitrogen-doped porous Co 3 O 4/Graphene nanocomposite for advanced lithium-ion batteries 9(9): 1253. doi:10.3390/nano9091253.
  • Zheng, Y., Pfäffl, L., Seifert, H.J., Pfleging, W. 2019. Lithium Distribution in Structured Graphite Anodes Investigated by Laser-Induced Breakdown Spectroscopy. Applied Sciences (Switzerland) 9(20). doi: 10.3390/app9204218.
  • Zhou, Y.-Q., X.-L. Dong, W.-C. Li, G.-P. Hao, D. Yan, A.-H. Lu. 2021. Millimeter-sized few-layer graphene sheets with aligned channels for fast lithium-ion charging kinetics. Journal of Energy Chemistry 55:62–69. doi:10.1016/j.jechem.2020.05.069.
  • Zhu, B., X. Liu, N. Li, C. Yang, T. Ji, K. Yan, H. Chi, X. Zhang, F. Sun, D. Sun. 2019. Three-dimensional porous graphene microsphere for high-performance anode of lithium ion batteries. Surface & Coatings Technology 360:232–37. doi:10.1016/j.surfcoat.2018.12.104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.