502
Views
1
CrossRef citations to date
0
Altmetric
Review

A review of atmospheric fine particulate matters: chemical composition, source identification and their variations in Beijing

, ORCID Icon, , , , & ORCID Icon show all
Pages 4783-4807 | Received 12 Feb 2022, Accepted 29 Apr 2022, Published online: 31 May 2022

References

  • Al-Naiema, I. M., S. Yoon, Y.-Q. Wang, Y.-X. Zhang, R. J. Sheesley, E. A. Stone. 2018. Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods. Environmental Pollution (Barking, Essex: 1987) 240:34–43. doi:10.1016/j.envpol.2018.04.071.
  • Amato, F., T. Moreno, M. Pandolfi, X. Querol, A. Alastuey, A. Delgado, M. Pedrero, N. Cots. 2010. Concentrations, sources and geochemistry of airborne particulate matter at a major European airport. Journal of Environmental Monitoring 12 (4):854–62. doi: 10.1039/b925439k.
  • Balachandran, S., H. H. Chang, J. E. Pachon, H. A. Holmes, J. A. Mulholland, A. G. Russell. 2013. Bayesian-based ensemble source apportionment of PM 2.5. Environmental Science & Technology 47 (23):13511–18. doi: 10.1021/es4020647.
  • Beijing Municipal Ecology and Environment Bureau. 2019. Beijing early implementation of the six motor vehicle emission standards. accessed March 31, 22. http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/zfxxgk43/fdzdgknr2/xwfb/851653/index.html.
  • Beijing Municipal Science and Technology Commission. 2018. The popularization and application of new energy automobile management approach. accessed March 31,22. http://kw.beijing.gov.cn/art/2018/2/26/art_2386_2610.html.
  • Belis, C. A., F. Karagulian, B. R. Larsen, P. K. Hopke. 2013. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment 69:94–108. doi:10.1016/j.atmosenv.2012.11.009.
  • Belis, C. A., D. Pernigotti, G. Pirovano. 2020. Evaluation of receptor and chemical transport models for PM10 source apportionment. Atmospheric Environment: X 5:100053.
  • Bilo, F., L. Borgese, A. Wambui, A. Assi, A. Zacco, S. Federici, D. M. Eichert, K. Tsuji, R. G. Lucchini, D. Placidi, et al. 2018. Comparison of multiple X-ray fluorescence techniques for elemental analysis of particulate matter collected on air filters. Journal of Aerosol Science 122:1–10. doi:10.1016/j.jaerosci.2018.05.003.
  • Boman, J., A. A. Shaltout, A. M. Abozied, S. K. Hassan. 2013. On the elemental composition of PM 2.5 in central Cairo, Egypt. X-Ray Spectrometry 42 (4):276–83. doi: 10.1002/xrs.2464.
  • Bressi, M., J. Sciare, V. Ghersi, N. Bonnaire, J. B. Nicolas, J.-E. Petit, S. Moukhtar, A. Rosso, N. Mihalopoulos, A. Féron, et al. 2013. A one-year comprehensive chemical characterisation of fine aerosol (PM2.5) at urban, suburban and rural background sites in the region of Paris (France). Atmospheric Chemistry and Physics 13 (15):7825–44. doi: 10.5194/acp-13-7825-2013.
  • Brown, S. G., T. Lee, P. T. Roberts, J. L. Collett. 2013. Variations in the OM/OC ratio of urban organic aerosol next to a major roadway. Journal of the Air & Waste Management Association 63 (12):1422–33. doi: 10.1080/10962247.2013.826602.
  • Bruno, P., M. Caselli, G. de Gennaro, P. Ielpo, B. E. Daresta, P. R. Dambruoso, V. Paolillo, C. M. Placentino, L. Trizio. 2008. Application of receptor models to airborne particulate matter. Microchemical Journal 88 (2):121–29. doi: 10.1016/j.microc.2007.11.018.
  • Callén, M. S., M. T. de la Cruz, J. M. López, M. V. Navarro, A. M. Mastral. 2009. Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Chemosphere 76 (8):1120–29. doi: 10.1016/j.chemosphere.2009.04.015.
  • Carroll, P., M. Chesser, and P. Lyons. 2020. Air source heat pumps field studies: A systematic literature review. Renewable and Sustainable Energy Reviews 134:110275. doi:10.1016/j.rser.2020.110275.
  • Chen, L.-W. A., B. G. Doddridge, R. R. Dickerson, J. C. Chow, R. C. Henry. 2002. Origins of fine aerosol mass in the Baltimore–Washington corridor: Implications from observation, factor analysis, and ensemble air parcel back trajectories. Atmospheric Environment 36 (28):4541–54. doi: 10.1016/S1352-2310(02)00399-0.
  • Chen, W., J. Ren, T. Chen, Z. Xu, N. Nick, S. Chen, X. Wu, J. Lin, C. Zhao, Y. Liu, et al. 2021. The impact of haze on photovoltaic systems: A case study. Energy Sources, Part A 1–17. article in press. doi: 10.1080/15567036.2021.1915431.
  • Cheng, S., J. Lang, Y. Zhou, L. Han, G. Wang, D. Chen. 2013a. A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmospheric Environment 79:308–16. doi:10.1016/j.atmosenv.2013.06.043.
  • Cheng, Y., G. Engling, K.-B. He, F.-K. Duan, Y.-L. Ma, Z.-Y. Du, J.-M. Liu, M. Zheng, R. J. Weber. 2013b. Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics 13 (15):7765–81. doi: 10.5194/acp-13-7765-2013.
  • China Ministry of Environmental Protection. 2013. Specifications and test procedures for PM10 and PM2.5 sampler. accessed October 14, 21. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201308/t20130802_256854.shtml.
  • Chow, J. C., J. G. Watson, H. Kuhns, V. Etyemezian, D. H. Lowenthal, D. Crow, S. D. Kohl, J. P. Engelbrecht, M. C. Green. 2004. Source profiles for industrial, mobile, and area sources in the big bend regional aerosol visibility and observational study. Chemosphere 54 (2):185–208. doi: 10.1016/j.chemosphere.2003.07.004.
  • Cohen, D. D., J. Crawford, E. Stelcer, V. T. Bac. 2010. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmospheric Environment 44 (3):320–28. doi: 10.1016/j.atmosenv.2009.10.037.
  • Cropper, P. M., D. K. Overson, R. A. Cary, D. J. Eatough, J. C. Chow, J. C. Hansen. 2017. Development of the GC-MS organic aerosol monitor (GC-MS OAM) for in-field detection of particulate organic compounds. Atmospheric Environment 169:258–66. doi:10.1016/j.atmosenv.2017.09.019.
  • Dallmann, T. R., T. B. Onasch, T. W. Kirchstetter, D. R. Worton, E. C. Fortner, S. C. Herndon, E. C. Wood, J. P. Franklin, D. R. Worsnop, A. H. Goldstein, et al. 2014. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics 14 (14):7585–99. doi: 10.5194/acp-14-7585-2014.
  • Deshmukh, D. K., M. K. Deb, Y. Suzuki, G. N. Kouvarakis. 2013. Water-soluble ionic composition of PM2.5–10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern central India. Air Quality, Atmosphere & Health 6 (1):95–110. doi: 10.1007/s11869-011-0149-0.
  • Dos Santos Souza, E. J., C. Z. Mora, B. H. A. Zuluaga, C. D. Britto Do Amaral, M. T. Grassi. 2021. Multi-elemental analysis of particulate matter PM2.5 and PM10 by ICP OES. Talanta 221:121457. doi:10.1016/j.talanta.2020.121457.
  • Drosatou, A. D., K. Skyllakou, G. N. Theodoritsi, S. N. Pandis. 2019. Positive matrix factorization of organic aerosol: Insights from a chemical transport model. Atmospheric Chemistry and Physics 19 (2):973–86. doi: 10.5194/acp-19-973-2019.
  • Engelbrecht, J. P., I. Menéndez, and E. Derbyshire. 2014. Sources of PM2.5 impacting on Gran Canaria, Spain. CATENA 117:119–32. doi:10.1016/j.catena.2013.06.017.
  • European Standards. 2014. Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter. accessed October 14, 21. https://www.en-standard.eu/csn-en-12341-ambient-air-standard-gravimetric-measurement-method-for-the-determination-of-the-pm10-or-pm2-5-mass-concentration-of-suspended-particulate-matter/.
  • Fang, Y., V. Naik, L. W. Horowitz, D. L. Mauzerall. 2013. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmospheric Chemistry and Physics 13 (3):1377–94. doi: 10.5194/acp-13-1377-2013.
  • Fang, Y., Y. Chen, G. Huang, L. Hu, C. Tian, J. Xie, J. Lin, T. Lin. 2021. Particulate and dissolved black carbon in coastal china seas: Spatiotemporal variations, dynamics, and potential implications. Environmental Science & Technology 55 (1):788–96. doi: 10.1021/acs.est.0c06386.
  • Feng, J., C. K. Chan, M. Fang, M. Hu, L. He, X. Tang. 2006. Characteristics of organic matter in PM2.5 in Shanghai. Chemosphere 64 (8):1393–400. doi: 10.1016/j.chemosphere.2005.12.026.
  • Feng, J., M. Li, P. Zhang, S. Gong, M. Zhong, M. Wu, M. Zheng, C. Chen, H. Wang, S. Lou, et al. 2013. Investigation of the sources and seasonal variations of secondary organic aerosols in PM2.5 in Shanghai with organic tracers. Atmospheric Environment 79:614–22. doi:10.1016/j.atmosenv.2013.07.022.
  • Feng, J., M. Zhong, B. Xu, Y. Du, M. Wu, H. Wang, C. Chen. 2014. Concentrations, seasonal and diurnal variations of black carbon in PM2.5 in Shanghai, China. Atmospheric Research 147–148:1–9. doi:10.1016/j.atmosres.2014.04.018.
  • Feng, S., D. Gao, F. Liao, F. Zhou, X. Wang. 2016. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety 128:67–74. doi:10.1016/j.ecoenv.2016.01.030.
  • Feng, T., H. Du, Z. Lin, J. Zuo. 2020. Spatial spillover effects of environmental regulations on air pollution: Evidence from urban agglomerations in China. Journal of Environmental Management 272:110998. doi:10.1016/j.jenvman.2020.110998.
  • Fine, P. M., G. R. Cass, and B. R. T. Simoneit. 2004. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species. Environmental Engineering Science 21 (6):705–21. doi:10.1089/ees.2004.21.705.
  • Gao, B., H. Guo, X.-M. Wang, X.-Y. Zhao, Z.-H. Ling, Z. Zhang, T.-Y. Liu. 2013. Tracer-based source apportionment of polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China, using positive matrix factorization (PMF). Environmental Science and Pollution Research 20 (4):2398–409. doi: 10.1007/s11356-012-1129-0.
  • Gao, J., X. Peng, G. Chen, J. Xu, G.-L. Shi, Y.-C. Zhang, Y.-C. Feng. 2016. Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution. The Science of the Total Environment 542:162–71. doi:10.1016/j.scitotenv.2015.10.082.
  • Gautam, S., A. K. Patra, and P. Kumar. 2019. Status and chemical characteristics of ambient PM2.5 pollutions in China: A review. Environ Dev Sustain 21 (4):1649–74. doi:10.1007/s10668-018-0123-1.
  • Goldstein, A., and I. Galbally. 2007. Known and unexplored organic constituents in the earth’s atmosphere. Environmental Science & Technology 41 (5):1514–21. doi:10.1021/es072476p.
  • Gonçalves, C., C. Alves, A. P. Fernandes. 2011. Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species. Atmospheric Environment 45 (27):4533–45. doi: 10.1016/j.atmosenv.2011.05.071.
  • González, L. T., F. E. L. Rodríguez, M. Sánchez-Domínguez, A. Cavazos, C. Leyva-Porras, L. G. Silva-Vidaurri, K. A. Askar, B. I. Kharissov, J. F. Villarreal Chiu, J. M. Alfaro Barbosa, et al. 2017. Determination of trace metals in TSP and PM 2.5 materials collected in the metropolitan area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmospheric Research 196:8–22. doi:10.1016/j.atmosres.2017.05.009.
  • Gu, Z., J. Feng, W. Han, M. Wu, J. Fu, G. Sheng. 2010. Characteristics of organic matter in PM2.5 from an e-waste dismantling area in Taizhou, China. Chemosphere 80 (7):800–06. doi: 10.1016/j.chemosphere.2010.04.078.
  • Guo, H., A. J. Ding, K. L. So. 2009. Receptor modeling of source apportionment of Hong Kong aerosols and the implication of urban and regional contribution. Atmospheric Environment 43 (6):1159–69. doi: 10.1016/j.atmosenv.2008.04.046.
  • Gupta, S., R. Gadi, S. K. Sharma. 2018. Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustainable Cities and Society 39:52–67. doi:10.1016/j.scs.2018.01.051.
  • Gupta, S., P. Soni, and A. K. Gupta. 2021. Optimization of WD-XRF analytical technique to measure elemental abundance in PM2.5 dust collected on quartz-fibre filter. Atmospheric Pollution Research 12 (3):1377–94. doi:10.1016/j.apr.2021.01.001.
  • Hama, S., P. Kumar, M. S. Alam, D. J. Rooney, W. J. Bloss, Z. Shi, R. M. Harrison, L. R. Crilley, M. Khare, S. K. Gupta, et al. 2021. Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere 274:129913. doi:10.1016/j.chemosphere.2021.129913.
  • Han, B., S. Kong, Z. Bai. 2010. Characterization of elemental species in PM2.5 Samples collected in four cities of northeast China. Water, Air, & Soil Pollution 209 (1–4):15–28. doi: 10.1007/s11270-009-0176-8.
  • Hand, J. L., B. A. Schichtel, W. C. Malm, N. H. Frank. 2013. Spatial and temporal trends in PM 2.5 organic and elemental carbon across the United States. Advances in Meteorology 2013:e367674. doi:10.1155/2013/367674.
  • He, L.-Y., M. Hu, X.-F. Huang, Y.-H. Zhang, X.-Y. Tang. 2006. Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing. The Science of the Total Environment 359(1–3):167–76. doi: 10.1016/j.scitotenv.2005.05.044.
  • He, K., F. Yang, F. Duan. 2011. Atmospheric particulate matter and regional compound pollution. Beijing, China: Science Press.
  • He, M., X. Zeng, K. Zhang. 2017. Fine particulate matter concentrations in urban Chinese cities, 2005–2016: A systematic review. International Journal of Environmental Research and Public Health 14:191.
  • He, J., S. Gong, C. Zhou, S. Lu, L. Wu, Y. Chen, Y. Yu, S. Zhao, L. Yu, C. Yin, et al. 2018. Analyses of winter circulation types and their impacts on haze pollution in Beijing. Atmospheric Environment 192:94–103. doi:10.1016/j.atmosenv.2018.08.060.
  • Hellén, H., H. Hakola, and T. Laurila. 2003. Determination of source contributions of NMHCs in Helsinki (60°N, 25°E) using chemical mass balance and the Unmix multivariate receptor models. Atmospheric Environment 37 (11):1413–24. doi:10.1016/S1352-2310(02)01049-X.
  • Hennigan, C. J., A. Mucci, and B. E. Reed. 2019. Trends in PM 2.5 transition metals in urban areas across the United States. Environmental Research Letters 14 (10):104006. doi:10.1088/1748-9326/ab4032.
  • Henry, R. C. 2003. Multivariate receptor modeling by N-dimensional edge detection. Chemometrics and Intelligent Laboratory Systems 65 (2):179–89. doi:10.1016/S0169-7439(02)00108-9.
  • Ho, K. F., J. J. Cao, S. C. Lee, C. K. Chan. 2006. Source apportionment of PM2.5 in urban area of Hong Kong. Journal of Hazardous Materials 138 (1):73–85. doi: 10.1016/j.jhazmat.2006.05.047.
  • Hopke, P. K. 2016. Review of receptor modeling methods for source apportionment. Journal of the Air & Waste Management Association 66 (3):237–59. doi:10.1080/10962247.2016.1140693.
  • Hu, S., R. McDonald, D. Martuzevicius. 2006. UNMIX modeling of ambient PM2.5 near an interstate highway in Cincinnati, OH, USA. Atmospheric Environment 40:378–95. doi:10.1016/j.atmosenv.2006.02.038.
  • Hu, D., Q. Bian, A. K. H. Lau. 2010. Source apportioning of primary and secondary organic carbon in summer PM 2.5 in Hong Kong using positive matrix factorization of secondary and primary organic tracer data. Journal of Geophysical Research: Atmospheres 115 (D16):D16204. doi: 10.1029/2009JD012498.
  • Hu, G., Y. Zhang, J. Sun, L. Zhang, X. Shen, W. Lin, Y. Yang. 2014a. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations. Atmospheric Research 145–146:1–11. doi:10.1016/j.atmosres.2014.03.014.
  • Hu, Y., S. Balachandran, J. E. Pachon, J. Baek, C. Ivey, H. Holmes, M. T. Odman, J. A. Mulholland, A. G. Russell. 2014b. Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach. Atmospheric Chemistry and Physics 14 (11):5415–31. doi: 10.5194/acp-14-5415-2014.
  • Huang, X. H. H., Q. J. Bian, P. K. K. Louie. 2014. Contributions of vehicular carbonaceous aerosols to PM2.5 in a roadside environment in Hong Kong. Atmospheric Chemistry and Physics 14:9279–93.
  • Huang, X., Z. Liu, J. Liu, B. Hu, T. Wen, G. Tang, J. Zhang, F. Wu, D. Ji, L. Wang, et al. 2017. Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics 17 (21):12941–62. doi: 10.5194/acp-17-12941-2017.
  • Huang, -H.-H., Y.-Q. Wang, S.-P. Li. 2020a. Seasonal variation of water-soluble ions in PM2.5 in Xi’an. Huanjing Kexue 41:2528–35.
  • Huang, Y., N. C. Surawski, Y.-S. Yam, C. K. C. Lee, J. L. Zhou, B. Organ, E. F. C. Chan. 2020b. Re-evaluating effectiveness of vehicle emission control programmes targeting high-emitters. Nature Sustainability 3 (11):904–07. doi: 10.1038/s41893-020-0573-y.
  • Huang, L., Y. Zhu, Q. Wang. 2021a. Assessment of the effects of straw burning bans in China: Emissions, air quality, and health impacts. The Science of the Total Environment 789:147935.
  • Huang, X., G. Tang, J. Zhang. 2021b. Characteristics of PM2.5 pollution in Beijing after the improvement of air quality. Journal of Environmental Sciences 100:1–10. doi:10.1016/j.jes.2020.06.004.
  • Huang, Y., C. Lei, C.-H. Liu, P. Perez, H. Forehead, S. Kong, J. L. Zhou. 2021c. A review of strategies for mitigating roadside air pollution in urban street canyons. Environmental Pollution (Barking, Essex: 1987) 280:116971. doi:10.1016/j.envpol.2021.116971.
  • Huang, Y., C. K. C. Lee, Y. S. Yam, W.-C. Mok, J. L. Zhou, Y. Zhuang, N. C. Surawski, B. Organ, E. F. C. Chan. 2022a. Rapid detection of high-emitting vehicles by on-road remote sensing technology improves urban air quality. Science Advances 8 (5):eabl7575. doi: 10.1126/sciadv.abl7575.
  • Huang, Y., E. C. Y. Ng, N. C. Surawski, J. L. Zhou, X. Wang, J. Gao, W. Lin, R. J. Brown. 2022b. Effect of diesel particulate filter regeneration on fuel consumption and emissions performance under real-driving conditions. Fuel 320:123937. doi:10.1016/j.fuel.2022.123937.
  • Ikemori, F., R. Nishimura, S. Saito, M. Akiyama, S. Yamamoto, A. Iijima, S. Sugata. 2021. Organic molecular tracers in PM2.5 at urban sites during spring and summer in Japan: Impact of secondary organic aerosols on water-soluble organic carbon. Atmosphere 12 (5):579. doi: 10.3390/atmos12050579.
  • Jain, S., S. K. Sharma, T. K. Mandal, M. Saxena. 2018. Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 37:107–18. doi:10.1016/j.partic.2017.05.009.
  • Ji, D., Y. Cui, L. Li, J. He, L. Wang, H. Zhang, W. Wang, L. Zhou, W. Maenhaut, T. Wen, et al. 2018. Characterization and source identification of fine particulate matter in urban Beijing during the 2015 spring festival. The Science of the Total Environment 628–629:430–40. doi:10.1016/j.scitotenv.2018.01.304.
  • Karakas, F., I. Imamoglu, and K. Gedik. 2017. Positive matrix factorization dynamics in fingerprinting: A comparative study of PMF2 and EPA-PMF3 for source apportionment of sediment polychlorinated biphenyls. Environmental Pollution (Barking, Essex: 1987) 220:20–28. doi:10.1016/j.envpol.2016.07.066.
  • Kong, S., B. Han, Z. Bai, L. Chen, J. Shi, Z. Xu. 2010. Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China. The Science of the Total Environment 408 (20):4681–94. doi: 10.1016/j.scitotenv.2010.06.005.
  • Lage, J., H. T. Wolterbeek, M. A. Reis, P. C. Chaves, S. Garcia, S. M. Almeida. 2016. Source apportionment by positive matrix factorization on elemental concentration obtained in PM10 and biomonitors collected in the vicinities of a steelworks. Journal of Radioanalytical and Nuclear Chemistry 309 (1):397–404. doi: 10.1007/s10967-016-4751-3.
  • Lang, J., Y. Zhang, Y. Zhou, S. Cheng, D. Chen, X. Guo, S. Chen, X. Li, X. Xing, H. Wang, et al. 2017. Trends of PM2.5 and chemical composition in Beijing, 2000–2015. Aerosol and Air Quality Research 17 (2):412–25. doi: 10.4209/aaqr.2016.07.0307.
  • Li, X., X. Guo, X. Liu, C. LIU, S. Zhang, Y. Wang. 2009. Distribution and sources of solvent extractable organic compounds in PM2.5 during 2007 Chinese spring festival in Beijing. Journal of Environmental Sciences 21 (2):142–49. doi: 10.1016/S1001-0742(08)62242-1.
  • Li, Y., J. Cao, J. Li, J. Zhou, H. Xu, R. Zhang, Z. Ouyang. 2013. Molecular distribution and seasonal variation of hydrocarbons in PM2.5 from Beijing during 2006. Particuology 11 (1):78–85. doi: 10.1016/j.partic.2012.09.002.
  • Li, L., W. Lai, J. Pu, H. Mo, D. Dai, G. Wu, S. Deng. 2018. Polar organic tracers in PM 2.5 aerosols from an inland background area in Southwest China: Correlations between secondary organic aerosol tracers and source apportionment. Journal of Environmental Sciences 69:281–93. doi:10.1016/j.jes.2017.06.002.
  • Li, D., Q. Du, H. Dong, J. Gao, Z. Cui, J. Yu, Y. Liu. 2020. Field measurements on the generation and emission characteristics of PM 2.5 from industrial fluidized bed boilers. Energy Sources, Part A 42 (6):773–84. doi: 10.1080/15567036.2019.1602193.
  • Liu, X., J. Zhu, P. Van Espen, F. Adams, R. Xiao, S. Dong, Y. Li. 2005. Single particle characterization of spring and summer aerosols in Beijing: Formation of composite sulfate of calcium and potassium. Atmospheric Environment 39 (36):6909–18. doi: 10.1016/j.atmosenv.2005.08.007.
  • Liu, Z., Y. Xie, B. Hu, T. Wen, J. Xin, X. Li, Y. Wang. 2017. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere 183:119–31. doi:10.1016/j.chemosphere.2017.05.095.
  • Liu, W., Y. Xu, W. Liu, Q. Liu, S. Yu, Y. Liu, X. Wang, S. Tao. 2018. Oxidative potential of ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environmental Pollution (Barking, Essex: 1987) 236:514–28. doi:10.1016/j.envpol.2018.01.116.
  • Lu, S., D. Liu, W. Zhang, P. Liu, Y. Fei, Y. Gu, M. Wu, S. Yu, S. Yonemochi, X. Wang, et al. 2015. Physico-chemical characterization of PM2.5 in the microenvironment of Shanghai subway. Atmospheric Research 153:543–52. doi:10.1016/j.atmosres.2014.10.006.
  • Lv, B., B. Zhang, and Y. Bai. 2016. A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012. Atmospheric Environment 124:98–108. doi:10.1016/j.atmosenv.2015.09.031.
  • Lyu, R., Z. Shi, M. S. Alam, X. Wu, D. Liu, T. V. Vu, C. Stark, P. Fu, Y. Feng, R. M. Harrison, et al. 2019. Insight into the composition of organic compounds ( ≥  C6) in PM2.5 in wintertime in Beijing, China. Atmospheric Chemistry and Physics 19 (16):10865–81. doi: 10.5194/acp-19-10865-2019.
  • Manousakas, M., H. Papaefthymiou, K. Eleftheriadis, K. Katsanou. 2014. Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS. The Science of the Total Environment 493:694–700. doi:10.1016/j.scitotenv.2014.06.043.
  • Manousakas, M., E. Diapouli, C. Α. Belis, V. Vasilatou, M. Gini, F. Lucarelli, X. Querol, K. Eleftheriadis. 2021. Quantitative assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5 at different sites within a large metropolitan area. Environmental Research 192:110257. doi:10.1016/j.envres.2020.110257.
  • Mazaheri, M., T. E. Bostrom, G. R. Johnson, L. Morawska. 2013. Composition and morphology of particle emissions from in-use aircraft during takeoff and landing. Environmental Science & Technology 47 (10):5235–42. doi: 10.1021/es3046058.
  • Miller, M. S., S. K. Friedlander, and G. M. Hidy. 1972. A chemical element balance for the Pasadena aerosol. Journal of Colloid and Interface Science 39 (1):165–76. doi:10.1016/0021-9797(72)90152-X.
  • Molino, A., S. Chianese, and D. Musmarra. 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry 25 (1):10–25. doi:10.1016/j.jechem.2015.11.005.
  • Murillo, J. H., A. C. Ramos, F. Á. García, S. Blanco Jiménez, B. Cárdenas, A. Mizohata. 2012. Chemical composition of PM2.5 particles in Salamanca, Guanajuato Mexico: Source apportionment with receptor models. Atmospheric Research 107:31–41. doi:10.1016/j.atmosres.2011.12.010.
  • Negral, L., S. Moreno-Grau, J. Moreno, X. Querol, M. M. Viana, A. Alastuey. 2008. Natural and Anthropogenic Contributions to PM10 and PM2.5 in an urban area in the western Mediterranean coast. Water, Air, and Soil Pollution 192 (1–4):227–38. doi: 10.1007/s11270-008-9650-y.
  • Onat, B., and B. Stakeeva. 2013. Personal exposure of commuters in public transport to PM2.5 and fine particle counts. Atmospheric Pollution Research 4 (3):329–35. doi:10.5094/APR.2013.037.
  • Paatero, P., and U. Tapper. 1993. Analysis of different modes of factor analysis as least squares fit problems. Chemometrics and Intelligent Laboratory Systems 18 (2):183–94. doi:10.1016/0169-7439(93)80055-M.
  • Paatero, P., and P. K. Hopke. 2003. Discarding or downweighting high-noise variables in factor analytic models. Analytica chimica acta 490 (1–2):277–89. doi:10.1016/S0003-2670(02)01643-4.
  • Park, J., K.-H. Lee, H. Kim, J. Woo, J. Heo, C.-H. Lee, S.-M. Yi, C.-G. Yoo. 2021. The impact of organic extracts of seasonal PM2.5 on primary human lung epithelial cells and their chemical characterization. Environmental Science and Pollution Research 28 (42):59868–80. doi: 10.1007/s11356-021-14850-1.
  • Perez, L., A. Tobías, X. Querol, J. Pey, A. Alastuey, J. Díaz, J. Sunyer. 2012. Saharan dust, particulate matter and cause-specific mortality: A case–crossover study in Barcelona (Spain). Environment International 48:150–55. doi:10.1016/j.envint.2012.07.001.
  • Pernigotti, D., C. A. Belis, and L. Spanò. 2016. SPECIEUROPE: The European data base for PM source profiles. Atmospheric Pollution Research 7 (2):307–14. doi:10.1016/j.apr.2015.10.007.
  • Petrova-Antonova, D., J. Jelyazkov, and I. Pavlova. 2021. Air quality monitoring platform with multiple data source support. Energy. Source. Part A 1–17. article in press. doi: 10.1080/15567036.2021.1931568.
  • Polezer, G., R. H. M. Godoi, S. Potgieter-Vermaak, R. A. F. de Souza, R. V. Andreoli, C. I. Yamamoto, A. Oliveira. 2020. Atomic absorption spectrometry methods to access the metal solubility of aerosols in artificial lung fluid. Applied Spectroscopy 74 (8):932–39. doi: 10.1177/0003702820906422.
  • Popovicheva, O. B., G. Engling, I.-T. Ku, M. A. Timofeev, N. K. Shonija. 2019. Aerosol emissions from long-lasting smoldering of boreal peatlands: Chemical composition, markers, and microstructure. Aerosol and Air Quality Research 19 (3):484–503. doi: 10.4209/aaqr.2018.08.0302.
  • Pui, D. Y. H., S.-C. Chen, and Z. Zuo. 2014. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 13:1–26. doi:10.1016/j.microc.2013.10.009.
  • Samy, S., and M. D. Hays. 2013. Quantitative LC–MS for water-soluble heterocyclic amines in fine aerosols (PM2.5) at Duke Forest, USA. Atmospheric Environment 72:77–80. doi:10.1016/j.atmosenv.2013.02.032.
  • Schauer, J. J., M. J. Kleeman, G. R. Cass, B. R. T. Simoneit. 2002. Measurement of emissions from air pollution sources. 5. C 1 −C 32 organic compounds from gasoline-powered motor vehicles. Environmental Science & Technology 36 (6):1169–80. doi: 10.1021/es0108077.
  • Shaltout, A. A., J. Boman, B. Welz, I. N. Castilho, E. A. Al Ashkar, S. M. Gaita. 2014. Method development for the determination of Cd, Cu, Ni and Pb in PM2.5 particles sampled in industrial and urban areas of greater Cairo, Egypt, using high-resolution continuum source graphite furnace atomic absorption spectrometry. Microchemical Journal 113:4–9.
  • Shaltout, A. A., S. K. Hassan, A. G. Karydas, Z. I. Zaki, N. Y. Mostafa, P. Kregsamer, P. Wobrauschek, C. Streli. 2018. Comparative elemental analysis of fine particulate matter (PM 2.5) from industrial and residential areas in greater Cairo-Egypt by means of a multi-secondary target energy dispersive X-ray fluorescence spectrometer. Spectrochim. Acta Part B 145:29–35. doi:10.1016/j.sab.2018.04.003.
  • Simon, H., L. Beck, P. V. Bhave, F. Divita, Y. Hsu, D. Luecken, J. D. Mobley, G. A. Pouliot, A. Reff, G. Sarwar, et al. 2010. The development and uses of EPA’s SPECIATE database. Atmospheric Pollution Research 1(4):196–206. doi: 10.5094/APR.2010.026.
  • Song, Y., S. Xie, Y. Zhang, L. Zeng, L. G. Salmon, M. Zheng. 2006a. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. The Science of the Total Environment 372 (1):278–86. doi: 10.1016/j.scitotenv.2006.08.041.
  • Song, Y., Y. Zhang, S. Xie, L. Zeng, M. Zheng, L. G. Salmon, M. Shao, S. Slanina. 2006b. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmospheric Environment 40 (8):1526–37. doi: 10.1016/j.atmosenv.2005.10.039.
  • Song, Y., X. Tang, S. Xie, Y. Zhang, Y. Wei, M. Zhang, L. Zeng, S. Lu. 2007. Source apportionment of PM2.5 in Beijing in 2004. Journal of Hazardous Materials 146 (1–2):124–30. doi: 10.1016/j.jhazmat.2006.11.058.
  • Song, S., Y. Wu, X. Zheng, Z. Wang, L. Yang, J. Li, J. Hao. 2014. Chemical characterization of roadside PM2.5 and black carbon in Macao during a summer campaign. Atmospheric Pollution Research 5 (3):381–87. doi: 10.5094/APR.2014.044.
  • Sosa, B. S., A. Porta, J. E. C. Lerner, R. Banda Noriega, L. Massolo. 2017. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels. Atmospheric Environment 160:27–35. doi:10.1016/j.atmosenv.2017.04.004.
  • Souza, D. Z., P. C. Vasconcellos, H. Lee, M. Aurela, K. Saarnio, K. Teinilä, R. Hillamo. 2014. Composition of PM2.5 and PM10 collected at urban sites in Brazil. Aerosol and Air Quality Research 14 (1):168–76. doi: 10.4209/aaqr.2013.03.0071.
  • Tao, J., L. Zhang, J. Cao, R. Zhang. 2017. A review of current knowledge concerning PM2. 5 chemical composition, aerosol optical properties and their relationships across China. Atmospheric Chemistry and Physics 17 (15):9485–518. doi: 10.5194/acp-17-9485-2017.
  • Tian, P., G. Wang, R. Zhang, Y. Wu, P. Yan. 2015. Impacts of aerosol chemical compositions on optical properties in urban Beijing, China. Particuology 18:155–64. doi:10.1016/j.partic.2014.03.014.
  • Tian, Y., X. Liu, R. Huo, Z. Shi, Y. Sun, Y. Feng, R. M. Harrison. 2021. Organic compound source profiles of PM2.5 from traffic emissions, coal combustion, industrial processes and dust. Chemosphere 278:130429. doi:10.1016/j.chemosphere.2021.130429.
  • Timko, M. T., S. E. Albo, T. B. Onasch, E. C. Fortner, Z. Yu, R. C. Miake-Lye, M. R. Canagaratna, N. L. Ng, D. R. Worsnop. 2014. Composition and sources of the organic particle emissions from aircraft engines. Aerosol Science and Technology 48 (1):61–73. doi: 10.1080/02786826.2013.857758.
  • Turap, Y., D. Talifu, X. Wang, T. Aierken, S. Rekefu, H. Shen, X. Ding, M. Maihemuti, Y. Tursun, W. Liu, et al. 2018. Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China. Environmental Science and Pollution Research 25 (23):22629–40. doi: 10.1007/s11356-018-2082-3.
  • U.S. Environmental Protection Agency. 1999. 40 CFR appendix L to part 50 - reference method for the determination of fine particulate matter as PM2.5 in the atmosphere. accessed October 14, 21. https://www.law.cornell.edu/cfr/text/40/appendix-L_to_part_50.
  • u.s. environmental protection agency. 2015a. positive matrix factorization model for environmental data analyses. accessed august 5, 21. https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-analyses.
  • U.S. Environmental Protection Agency. 2015b. SPECIATE. accessed August 6, 21. https://www.epa.gov/air-emissions-modeling/speciate.
  • U.S. Environmental Protection Agency. 2015c. Unmix 6.0 model for environmental data analyses. accessed August 6, 21. https://www.epa.gov/air-research/unmix-60-model-environmental-data-analyses.
  • Viana, M., X. Querol, A. Alastuey, J. I. Gil, M. Menéndez. 2006. Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 65 (11):2411–18. doi: 10.1016/j.chemosphere.2006.04.060.
  • Voutsa, D., C. Samara, E. Manoli, D. Lazarou, P. Tzoumaka. 2014. Ionic composition of PM2.5 at urban sites of northern Greece: Secondary inorganic aerosol formation. Environmental Science and Pollution Research 21 (7):4995–5006. doi: 10.1007/s11356-013-2445-8.
  • Waheed, S., M. Z. Jaafar, N. Siddique, A. Markwitz, R. G. Brereton. 2012. PIXE analysis of PM 2.5 and PM 2.5–10 for air quality assessment of Islamabad, Pakistan: Application of chemometrics for source identification. Journal of Environmental Science and Health, Part A 47 (13):2016–27. doi: 10.1080/10934529.2012.695559.
  • Wang, Y., G. Zhuang, A. Tang, H. Yuan, Y. Sun, S. Chen, A. Zheng. 2005. The ion chemistry and the source of PM2.5 aerosol in Beijing. Atmospheric Environment 39 (21):3771–84. doi: 10.1016/j.atmosenv.2005.03.013.
  • Wang, B., S. C. Lee, and K. F. Ho. 2006. Chemical composition of fine particles from incense burning in a large environmental chamber. Atmospheric Environment 40 (40):7858–68. doi:10.1016/j.atmosenv.2006.07.041.
  • Wang, Q., M. Shao, Y. Liu, K. William, G. Paul, X. Li, Y. Liu, S. Lu. 2007. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmospheric Environment 41 (37):8380–90. doi: 10.1016/j.atmosenv.2007.06.048.
  • Wang, H., Y. Zhuang, Y. Wang, Y. SUN, H. Yuan, G. Zhuang, Z. HAO. 2008. Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. Journal of Environmental Sciences 20 (11):1323–27. doi: 10.1016/S1001-0742(08)62228-7.
  • Wang, H., Y. Zhou, Y. Zhuang, X. Wang, Z. Hao. 2009a. Characterization of PM2.5 /PM2.5-10 and source tracking in the juncture belt between urban and rural areas of Beijing. Chinese Science Bulletin 54 (14):2506–15. doi: 10.1007/s11434-009-0021-x.
  • Wang, Q., M. Shao, Y. Zhang, Y. Wei, M. Hu, S. Guo. 2009b. Source apportionment of fine organic aerosols in Beijing. Atmospheric Chemistry and Physics 9(21):8573–85. doi: 10.5194/acp-9-8573-2009.
  • Wang, Z., X. Bi, G. Sheng, J. Fu. 2009c. Characterization of organic compounds and molecular tracers from biomass burning smoke in South China I: Broad-leaf trees and shrubs. Atmospheric Environment 43 (19):3096–102. doi: 10.1016/j.atmosenv.2009.03.012.
  • Wang, S., M. Zhao, J. Xing, Y. Wu, Y. Zhou, Y. Lei, K. He, L. Fu, J. Hao. 2010. Quantifying the air pollutants emission reduction during the 2008 Olympic games in Beijing. Environmental Science & Technology 44 (7):2490–96. doi: 10.1021/es9028167.
  • Wang, J., N. B. Geng, Y. F. Xu. 2014a. PAHs in PM2.5 in Zhengzhou: Concentration, carcinogenic risk analysis, and source apportionment. Environmental Monitoring and Assessment 186:7461–73.
  • Wang, W., W. Maenhaut, W. Yang, X. Liu, Z. Bai, T. Zhang, M. Claeys, H. Cachier, S. Dong, Y. Wang, et al. 2014b. One–year aerosol characterization study for PM2.5 and PM10 in Beijing. Atmospheric Pollution Research 5 (3):554–62. doi: 10.5094/APR.2014.064.
  • Wang, H., M. Tian, X. Li, Q. Chang, J. Cao, F. Yang, Y. Ma, K. He. 2015a. Chemical composition and light extinction contribution of PM2.5 in urban Beijing for a 1-year period. Aerosol and Air Quality Research 15 (6):2200–11. doi: 10.4209/aaqr.2015.04.0257.
  • Wang, Q., D. Zhang, B. Liu, T. Chen, Q. Wei, J. X. Li, Y. P. Liang. 2015b. Spatial and temporal variations of ambient PM2.5 source contributions using positive matrix factorization. China Environmental Science 35:2917–24.
  • Wang, X., J. C. Chow, S. D. Kohl, K. E. Percy, A. H. Legge, J. G. Watson. 2015c. Characterization of PM 2.5 and PM 10 fugitive dust source profiles in the Athabasca oil sands region. Journal of the Air & Waste Management Association 65 (12):1421–33. doi: 10.1080/10962247.2015.1100693.
  • Wang, Z., Y. Li, B. Liu, Sun, F., Zhang, D., Zhou, J., Liu, Z., Pan, L. 2016b. Chemical characteristics of PM2.5 in Beijing. Acta Ecologica Sinica 36:2382–92.
  • Wang, X., R. Zhang, and W. Yu. 2019. The effects of PM 2.5 concentrations and relative humidity on atmospheric visibility in Beijing. Journal of Geophysical Research: Atmospheres 124 (4):2235–59. doi:10.1029/2018JD029269.
  • Wang, Y., Y. Zhang, X. Li, J. Cao. 2021. Refined source apportionment of atmospheric PM2.5 in a typical city in Northwest China. Aerosol and Air Quality Research 21 (1):200146. doi: 10.4209/aaqr.2020.04.0146.
  • Weichenthal, S., R. Kulka, E. Lavigne, D. van Rijswijk, M. Brauer, P. J. Villeneuve, D. Stieb, L. Joseph, R. T. Burnett. 2017. Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology 28 (3):329–37. doi: 10.1097/EDE.0000000000000636.
  • World Health Organization. 2021. Ambient (outdoor) air pollution. accessed March 30, 2022. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  • Wu, D., Z. Wang, J. Chen, S. Kong, X. Fu, H. Deng, G. Shao, G. Wu. 2014. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China. Atmospheric Research 149:217–29. doi:10.1016/j.atmosres.2014.06.012.
  • Wu, X., F. Cao, M. Haque, M.-Y. Fan, S.-C. Zhang, Y.-L. Zhang. 2020. Molecular composition and source apportionment of fine organic aerosols in Northeast China. Atmospheric Environment 239:117722. doi:10.1016/j.atmosenv.2020.117722.
  • Xu, J., G. Ding, P. Yan, S. F. Wang, Z. Y. Meng, Y. M. Zhang, Y. C. Liu, X. L. Zhang, X. D. Xu. 2007. Componential characteristics and sources identification of PM2.5 in Beijing. Journal of Applied Meteorological Science 18:645–54.
  • Xu, H., W. Ta, L. Yang, R. Feng, K. He, Z. Shen, Z. Meng, N. Zhang, Y. Li, Y. Zhang. 2020. Characterizations of PM2.5-bound organic compounds and associated potential cancer risks on cooking emissions from dominated types of commercial restaurants in northwestern China. Chemosphere 261:127758. doi:10.1016/j.chemosphere.2020.127758.
  • Yan, D., Y. Kong, B. Ye, H. Xiang. 2021. Spatio-temporal variation and daily prediction of PM2.5 concentration in world-class urban agglomerations of China. Environmental Geochemistry and Health 43 (1):301–16. doi: 10.1007/s10653-020-00708-x.
  • Yang, F., K. He, B. Ye, X. Chen, L. Cha, S. H. Cadle, T. Chan, P. A. Mulawa. 2005a. One-year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai. Atmospheric Chemistry and Physics 5 (6):1449–57. doi: 10.5194/acp-5-1449-2005.
  • Yang, F., B. Ye, K. He, Y. Ma, S. H. Cadle, T. Chan, P. A. Mulawa. 2005b. Characterization of atmospheric mineral components of PM2.5 in Beijing and Shanghai, China. The Science of the Total Environment 343 (1–3):221–30. doi: 10.1016/j.scitotenv.2004.10.017.
  • Yang, F., L. Huang, F. Duan, W. Zhang, K. He, Y. Ma, J. R. Brook, J. Tan, Q. Zhao, Y. Cheng, et al. 2011. Carbonaceous species in PM2.5 at a pair of rural/urban sites in Beijing, 2005–2008. Atmospheric Chemistry and Physics 11 (15):7893–903. doi: 10.5194/acp-11-7893-2011.
  • Yang, Y., R. Zhou, J. Wu, Y. Yu, Z. Ma, L. Zhang. 2015. Seasonal variations and size distributions of water-soluble ions in atmospheric aerosols in Beijing, 2012. Journal of Environmental Sciences 34:197–205. doi:10.1016/j.jes.2015.01.025.
  • Yang, H., J. Chen, J. Wen, H. Tian, X. Liu. 2016. Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures. Atmospheric Environment 124:378–86. doi:10.1016/j.atmosenv.2015.05.015.
  • Yang, J., G. Liu, Y. Yao, C. Xiao, Q. Lin, C. Tang, P. Wang, X. Jin, B. Ni, D. Cui, et al. 2020. Elemental analysis of PM2.5 using PIXE and NAA in Xinzhen, Beijing. Journal of Radioanalytical and Nuclear Chemistry 323 (1):457–63. doi: 10.1007/s10967-019-06944-5.
  • Yao, X., C. K. Chan, M. Fang, Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B. 2002. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36 (26):4223–34. doi: 10.1016/S1352-2310(02)00342-4.
  • Yin, L., Z. Niu, X. Chen, J. Chen, F. Zhang, L. Xu. 2014. Characteristics of water-soluble inorganic ions in PM2.5 and PM2.5 2.5–10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China. Environmental Science and Pollution Research 21 (7):5141–56. doi: 10.1007/s11356-013-2134-7.
  • Youn, J.-S., S. Han, J.-S. Yi, D. I. Kang, K. W. Jang, Y. W. Jung, Y. K. Park, K. J. Jeon. 2021. Development of PM10 and PM2.5 cyclones for small sampling ports at stationary sources: Numerical and experimental study. Environmental Research 193:110507. doi:10.1016/j.envres.2020.110507.
  • Yu, Y., N. Schleicher, S. Norra, M. Fricker, V. Dietze, U. Kaminski, K. Cen, D. Stüben. 2011. Dynamics and origin of PM 2.5 during a three-year sampling period in Beijing, China. Journal of Environmental Monitoring 13 (2):334–46. doi: 10.1039/C0EM00467G.
  • Yu, L., G. Wang, R. Zhang, L. Zhang, Y. Song, B. Wu, X. Li, K. An, J. Chu. 2013. Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol and Air Quality Research 13 (2):574–83. doi: 10.4209/aaqr.2012.07.0192.
  • Zhang, W., J. Guo, Y. Sun, H. Yuan, G. Zhuang, Y. Zhuang, Z. Hao. 2007. Source apportionment for urban PM10 and PM2.5 in the Beijing area. Chinese Science Bulletin 52(5):608–15. doi: 10.1007/s11434-007-0076-5.
  • Zhang, T., M. Claeys, H. Cachier, S. Dong, W. Wang, W. Maenhaut, X. Liu. 2008. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmospheric Environment 42 (29):7013–21. doi: 10.1016/j.atmosenv.2008.04.050.
  • Zhang, R., A. Khalizov, L. Wang, M. Hu, W. Xu. 2012. Nucleation and growth of nanoparticles in the atmosphere. Chemical Reviews 112 (3):1957–2011. doi: 10.1021/cr2001756.
  • Zhang, R., J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C. S. L. Lee, L. Zhu, Z. Chen, Y. Zhao, et al. 2013. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmospheric Chemistry and Physics 13 (14):7053–74. doi: 10.5194/acp-13-7053-2013.
  • Zhang, L., T. Wang, M. Lv, Q. Zhang. 2015. On the severe haze in Beijing during January 2013: Unraveling the effects of meteorological anomalies with WRF-Chem. Atmospheric Environment 104:11–21. doi:10.1016/j.atmosenv.2015.01.001.
  • Zhang, L., C. Wang, H. Zhu, Yu, H., Lu, Y. 2016. Characterization and source apportionment of PM2.5 in mixed function area during summer and winter, Beijing. China Environmental Science 36:36–41.
  • Zhang, Y., J. Cai, S. Wang, K. He, M. Zheng. 2017a. Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. The Science of the Total Environment 586:917–29. doi:10.1016/j.scitotenv.2017.02.071.
  • Zhang, Z., W. Wang, M. Cheng, S. Liu, J. Xu, Y. He, F. Meng. 2017b. The contribution of residential coal combustion to PM 2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmospheric Environment 159:147–61. doi:10.1016/j.atmosenv.2017.03.054.
  • Zhang, Y., J. Lang, S. Cheng, S. Li, Y. Zhou, D. Chen, H. Zhang, H. Wang. 2018. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. The Science of the Total Environment 630:72–82. doi:10.1016/j.scitotenv.2018.02.151.
  • Zhang, H., Y. Xing, S. Cheng, X. Wang, P. Guan. 2021a. Characterization of multiple atmospheric pollutants during haze and non-haze episodes in Beijing, China: Concentration, chemical components and transport flux variations. Atmospheric Environment 246:118129. doi:10.1016/j.atmosenv.2020.118129.
  • Zhang, K., L. Yang, Q. Li, R. Li, D. Zhang, W. Xu, J. Feng, Q. Wang, W. Wang, L. Huang, et al. 2021b. Hourly measurement of PM2.5-bound nonpolar organic compounds in Shanghai: Characteristics, sources and health risk assessment. The Science of the Total Environment 789:148070. doi:10.1016/j.scitotenv.2021.148070.
  • Zhao, X., X. Zhang, X. Xu, J. Xu, W. Meng, W. Pu. 2009. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmospheric Environment 43 (18):2893–900. doi: 10.1016/j.atmosenv.2009.03.009.
  • Zhao, P. S., F. Dong, D. He, X. J. Zhao, X. L. Zhang, W. Z. Zhang, Q. Yao, H. Y. Liu. 2013. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China. Atmospheric Chemistry and Physics 13 (9):4631–44. doi: 10.5194/acp-13-4631-2013.
  • Zhao, X., H. Yan, M. Liu, L. Kang, J. Yu, R. Yang. 2018. Relationship between PM 2.5 adsorption and leaf surface morphology in ten urban tree species in Shenyang, China. Energy Sources, Part A 41 (8):1029–39. doi: 10.1080/15567036.2018.1539136.
  • Zhao, S., H. Tian, L. Luo, H. Liu, B. Wu, S. Liu, X. Bai, W. Liu, X. Liu, Y. Wu, et al. 2021. Temporal variation characteristics and source apportionment of metal elements in PM2.5 in urban Beijing during 2018–2019. Environmental Pollution (Barking, Essex: 1987) 268:115856. doi:10.1016/j.envpol.2020.115856.
  • Zheng, M., L. G. Salmon, J. J. Schauer, L. Zeng, C. S. Kiang, Y. Zhang, G. R. Cass. 2005. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment 39 (22):3967–76. doi: 10.1016/j.atmosenv.2005.03.036.
  • Zheng, M., Y. Zhang, C. Yan, X. Zhu, J. J. Schauer, Y. Zhang. 2014. Review of PM2.5 source apportionment methods in China. Acta Scientiarum Naturalium Universitatis Pekinensis 50:1141–54.
  • Zhou, J., Y. Xiong, Z. Xing, J. Deng, K. Du. 2017. Characterizing and sourcing ambient PM2.5 over key emission regions in China II: Organic molecular markers and CMB modeling. Atmospheric Environment 163:57–64. doi:10.1016/j.atmosenv.2017.05.033.
  • Zíková, N., Y. Wang, F. Yang, X. Li, M. Tian, P. K. Hopke. 2016. On the source contribution to Beijing PM2.5 concentrations. Atmospheric Environment 134:84–95. doi:10.1016/j.atmosenv.2016.03.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.