148
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Sensorless vector control of doubly fed induction generator based wind turbine using fuzzy fractional order adaptive disturbance rejection control

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4630-4663 | Received 30 Sep 2021, Accepted 29 Apr 2022, Published online: 25 May 2022

References

  • Abad, G., J. Lopez, M. A. Rodriguez, L. Marroyo, and G. Iwanski. 2011. Doubly fed induction machine: Modeling and control for wind energy generation. Hoboken, New Jersey: Wiley-IEEE Press. doi:10.1002/9781118104965.
  • Abad, G. 2016. Power electronics and electric drives for traction applications. SPi Global, Pondicherry, India: John Wiley & Sons. doi:10.1002/9781118954454.
  • Abdelbaset, A., Y. S. Mohamed, A. H. M. El-Sayed, and A. E. H. Abozeid Ahmed. 2018. Wind driven doubly fed induction generator: Grid synchronization and control. Cham, Switzerland: Springer. doi:10.1007/978-3-319-70108-0.
  • Abdelrahem, M., C. Hackl, and R. Kennel. 2015. Sensorless control of doubly-fed induction generators in variable-speed wind turbine systems. Proceedings of International Conference on Clean Electrical Power ICCEP IEEE, Taormina, Italy, 406–13. doi:10.1109/ICCEP.2015.7177656.
  • Abdelrahem, M., C. Hackl, and R. Kennel. 2016. Encoderless model predictive control of doubly-fed induction generators in variable-speed wind turbine systems. Journal of Physics. Conference Series 753 (11):1–10. doi:10.1088/1742-6596/753/11/112005.
  • Abu-Rub, H., M. Malinowski, and K. Al-Haddad. 2014. Power electronics for renewable energy systems, transportation and industrial applications. Wiley-IEEE Press. doi:10.1002/9781118755525.
  • Ali, M., and C. K. Alexander. 2017. Trajectory tracking control for a robotic manipulator using nonlinear active disturbance rejection control. Proceedings of ASME 2017 Dynamic Systems and Control Conference, Tysons, Virginia, USA, 1–8. doi:10.1115/DSCC2017-5088.
  • Bartolini, G., A. Ferrara, E. Usai, and V. I. Utkin. 2000. On multi-input chattering-free second-order sliding mode control. IEEE Transactions on Automatic Control 45 (9):1711–17. doi:10.1109/9.880629.
  • Belmokhtar, K., M. Doumbia, and K. Agbossou. 2014. Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator). Energy Elsevier 76:679–93. doi:10.1016/j.energy.2014.08.066.
  • Blaabjerg, F., M. Liserre, and K. Ma. 2012. Power electronics converters for wind turbine systems. IEEE Transactions on Industry Applications 48 (2):708–19. doi:10.1109/TIA.2011.2181290.
  • Bossoufi, B., M. Karim, A. Lagriou, M. Taoussi, and A. Derouich. 2015. Observer backstepping control of DFIG-generators for wind turbines variable-speed: FPGA-based implementation. Renewable Energy Elsevier 81:903–17. doi:10.1016/j.renene.2015.04.013.
  • Bouderbala, M., B. Bossoufi, A. Lagrioui, M. Taoussi, H. A. Aroussi, and Y. Ihedrane. 2018. Direct and indirect vector control of a doubly fed induction generator based in a wind energy conversion system. International Journal of Electrical and Computer Engineering IJECE 9 (3):1531–40. doi:10.11591/ijece.v9i3.pp1531-1540.
  • Boukhriss, A., T. Nasser, and A. Essadki. 2013. A linear active disturbance rejection control applied for DFIG based wind energy conversion system. International Journal of Computer Science Issues IJCSI 10 (2):391–99.
  • Boukhriss, A., A. Essadki, A. Bouallouch, and T. Nasser. 2014. Maximization of generated power from wind energy conversion systems using a doubly fed induction generator with active disturbance rejection control. Proceedings of 2nd World Conference on Complex Systems WCCS, Agadir, Morocco, 330–35. doi:10.1109/ICoCS.2014.7060907.
  • Cardenas, R., and R. Pena. 2004. Sensorless vector control of induction machines for variable-speed wind energy applications. IEEE Transactions on Energy Conversion 19 (1):196–205. doi:10.1109/TEC.2003.821863.
  • Cardenas, R., R. Pena, J. Clare, G. Asher, and J. Proboste. 2008. MRAS observers for sensorless control of doubly-fed induction generators. IEEE Transactions on Power Electronics 23 (3):1075–84. doi:10.1109/TPEL.2008.921189.
  • Chen, S. Z., N. C. Cheung, K. C. Wong, and J. Wu. 2011. Integral variable structure direct torque control of doubly fed induction generator. IET Renewable Power Generation 5 (1):18–25. doi:10.1049/iet-rpg.2009.0021.
  • Chen, G., L. Zhang, and X. Cai. 2014. Optimized control of the doubly fed induction generator system based on input–output linearizing scheme. Wind Engineering 38 (1):101–08. doi:10.1260/0309-524X.38.1.101.
  • Comanescu, M., and L. Xu. 2006. Sliding-mode MRAS speed estimators for sensorless vector control of induction machine. IEEE Transactions on Industrial Electronics 53 (1):146–53. doi:10.1109/TIE.2005.862303.
  • Da Costa, J. P., H. Pinheiro, T. Degner, and G. Arnold. 2010. Robust controller for DFIGs of grid-connected wind turbines. IEEE Transactions on Industrial Electronics 58 (9):4023–38. doi:10.1109/TIE.2010.2098630.
  • Dahbi, A., A. Reama, M. Hamouda, N. Nait-Said, and M. S. Nait-Said. 2019. Control and study of a real wind turbine. Computers & Electrical Engineering 80:1–16. doi:10.1016/j.compeleceng.2019.106492.
  • Ding, S., J. Wang, and W. X. Zheng. 2015. Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions. IEEE Transactions on Industrial Electronics 62 (9):5899–909. doi:10.1109/TIE.2015.2448064.
  • El Mehdi, A. S. A., and M. Abid. 2015. Fuzzy sliding mode control applied to a doubly fed induction generator for wind turbines. Turkish Journal of Electrical Engineering and Computer Sciences 23 (6):1673–86. doi:10.3906/elk-1404-64.
  • Evangelista, C., F. Valenciaga, and P. Puleston. 2013. Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains. IEEE Transactions on Energy Conversion 28 (3):682–89. doi:10.1109/TEC.2013.2272244.
  • Fridman, L., and A. Levant. 1996. Higher order sliding modes as a natural phenomenon in control theory. Berlin, Heidelberg: Springer-Verlag. 107–33. doi:10.1007/BFb0027563.
  • Fu, C., and W. Tan. 2021. Analysis and tuning of reduced-order active disturbance rejection control. Journal of the Franklin Institute 358 (1):339–62. doi:10.1016/j.jfranklin.2020.10.017.
  • Gadoue, S. M., D. Giaouris, and J. W. Finch. 2010. MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms. IEEE Transactions on Energy Conversion 25 (2):394–402. doi:10.1109/TEC.2009.2036445.
  • Gao, Z. 2015. Active disturbance rejection control for nonlinear fractional-order systems. International Journal of Robust and Nonlinear Control 26 (4):876–92. doi:10.1002/rnc.3344.
  • Gebru, F. M., B. Khan, and H. H. Alhelou. 2020. Analyzing low voltage ride through capability of doubly fed induction generator based wind turbine. Computers & Electrical Engineering 86 (3):1–19. doi:10.1016/j.compeleceng.2020.106727.
  • Guo, B. Z., and Z. L. Zhao. 2016. Active disturbance rejection control for nonlinear systems: An introduction. SPi Global, Chennai, India: John Wiley & Sons. doi:10.1002/9781119239932.ch2.
  • Han, J. 2009. From PID to auto disturbances rejection control. IEEE Transactions on Industrial Electronics 56 (3):900–06. doi:10.1109/TIE.2008.2011621.
  • Huang, Y. C., and J. Q. Han. 1998. Continuous-time system identification with the extended states observer. Control and Decision 4:381–84.
  • Kassem, A. M., K. M. Hasaneen, and A. Yousef. 2013. Dynamic modeling and robust power control of DFIG driven by wind turbine at infinite grid. International Journal of Electrical Power & Energy Systems 44 (1):375–82. doi:10.1016/j.ijepes.2011.06.038.
  • Khalil, H. K. 2002. Nonlinear systems. Third edition. Englewood ed. Cliffs, NJ: Prentice-Hall.
  • Kimathi, S. M. 2018. Design of an online adaptive controller for active disturbance rejection in a fixed wing UAV using reinforcement learning and differential games. M.Sc. dissertation, Jomo Kenyatta University of Agriculture and Technology. http://ir.jkuat.ac.ke/bitstream/handle/123456789/4543/Thesis.pdf.
  • Laghridat, H., A. Essadki, M. Annoukoubi, and T. Nasser. 2020. A novel adaptive active disturbance rejection control strategy to improve the stability and robustness for a wind turbine using a doubly fed induction generator. Journal of Electrical and Computer Engineering 8:1–14. doi:10.1155/2020/9847628.
  • Laghrouche, S., F. Plestan, and A. Glumineau. 2007. Higher order sliding mode control based on integral sliding mode. Automatica Elsevier 43 (3):531–37. doi:10.1016/j.automatica.2006.09.017.
  • Levant, A., and L. V. Levantovsky. 1993. Sliding order and sliding accuracy in sliding mode control. International Journal of Control 58 (6):1247–63. doi:10.1080/00207179308923053.
  • Levant, A. 2007. Principles of 2-sliding mode design. Automatica Elsevier 43 (4):576–86. doi:10.1016/j.automatica.2006.10.008.
  • Lin, W. M., C. M. Hong, and F. S. Cheng. 2010. Fuzzy neural network output maximization control for sensorless wind energy conversion system. Energy Elsevier 35 (2):592–601. doi:10.1016/j.energy.2009.10.030.
  • Liu, X., and X. Kong. 2013. Nonlinear model predictive control for DFIG-based wind power generation. IEEE Transactions on Automation Science and Engineering 11 (4):1046–55. doi:10.1109/TASE.2013.2284066.
  • Luo, H., H. Cheng, and J. Wang. 2015. A cascade linear active disturbance rejection controller for vector control system of PMSM. Proceedings of 3rd International Conference on Mechatronics, Robotics and Automation, Shenzhen, China, 1076–82. doi:10.2991/icmra-15.2015.208.
  • Mauricio, J. M., A. E. Leon, A. Gomez-Exposito, and J. A. Solsona. 2008. An adaptive nonlinear controller for dfim-based wind energy conversion systems. IEEE Transactions on Energy Conversion 23 (4):1025–35. doi:10.1109/TEC.2008.2001441.
  • Melicio, R., V. M. F. Mendes, and J. P. S. Catalao. 2011. Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems. Energy Elsevier 36 (1):520–29. doi:10.1016/j.energy.2010.10.012.
  • Moradi, H., and G. Vossoughi. 2015. Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers. Energy Elsevier 90 (2):1508–21. doi:10.1016/j.energy.2015.06.100.
  • Morren, J., and S. W. H. de Haan. 2007. Short-circuit current of wind turbines with doubly fed induction generator. IEEE Transactions on Energy Conversion 22 (1):174–80. doi:10.1109/TEC.2006.889615.
  • Munteanu, I., N. A. Cutululis, A. I. Bratcu, and E. Ceanga. 2005. Optimization of variable speed wind power systems based on a LQG approach. Control Engineering Practice Elsevier 13 (7):903–12. doi:10.1016/j.conengprac.2004.10.013.
  • Pan, C. T., and Y. L. Juan. 2010. A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system. IEEE Transactions on Energy Conversion 25 (1):207–16. doi:10.1109/TEC.2009.2032604.
  • Pande, V. N., U. M. Mate, and S. Kurode. 2013. Discrete sliding mode control strategy for direct real and reactive power regulation of wind driven DFIG. Electric Power Systems Research Elsevier 100:73–81. doi:10.1016/j.epsr.2013.03.001.
  • Peng, N., Y. Bai, H. Luo, and J. Bai. 2013. Artillery position control through auto disturbance rejection controller based-on fuzzy control. Proceedings of 5th International Conference on Intelligent Human-Machine Systems and Cybernetics IEEE, Hangzhou, China, 496–99. doi:10.1109/IHMSC.2013.124.
  • Petras, I. 2008. Stability of fractional-order systems with rational orders. Fractional Calculation Application Analysis 10(3): 1–25.
  • Pichan, M., H. Rastegar, and M. Monfared. 2013. Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems. Energy Elsevier 51:154–62. doi:10.1016/j.energy.2012.12.047.
  • Quari, K., T. Rekioua, and M. Ouhrouche. 2014. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer. ISA Transactions Elsevier 53 (1):76–84. doi:10.1016/j.isatra.2013.08.004.
  • Seker, M., E. Zergeroglu, and E. Tatlicioglu. 2013. Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: A robust backstepping approach. International Journal of Systems Science 47 (2):1–13. doi:10.1080/00207721.2013.834087.
  • Sguarezi Filho, A. J., M. E. Oliveira Filho, and E. Ruppert. 2011. A predictive power control for wind energy. IEEE Transactions on Sustainable Energy 2 (1):97–105. doi:10.1109/TSTE.2010.2088408.
  • Song, J., K. Gao, L. Wang, and E. Yang. 2016. Comparison of linear and nonlinear active disturbance rejection control method for hypersonic vehicle. Proceedings of 35th Chinese Control Conference CCC IEEE, Chengdu, China, 1–6. doi:10.1109/ChiCC.2016.7555064.
  • Struggl, S., V. Berbyuk, and H. Johansson. 2015. Review on wind turbines with focus on drive train system dynamics. Wind Energy 18:567–90. doi:10.1002/we.1721.
  • Sun, L., D. Li, and Z. Gao. 2016. Combined feed forward and model-assisted active disturbance rejection control for non-minimum phase system. ISA Transactions Elsevier 64 (4):24–33. doi:10.1016/j.isatra.2016.04.020.
  • Surinkaew, T., and I. Ngamroo. 2014. Coordinated robust control of DFIG wind turbine and PSS for stabilization of power oscillations considering system uncertainties. IEEE Transactions on Sustainable Energy 5 (3):823–33. doi:10.1109/TSTE.2014.2308358.
  • Taveiros, F. E. V., L. S. Barros, and F. B. Costa. 2015. Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines. Energy Elsevier 89:896–906. doi:10.1016/j.energy.2015.06.027.
  • Tohidi, A., H. Hajieghrary, and M. Ani Hsieh. 2016. Adaptive disturbance rejection control scheme for DFIG-based wind turbine: Theory and experiments. IEEE Transactions on Industry Applications 52 (3):2006–15. doi:10.1109/TIA.2016.2521354.
  • Utkin, V., and H. Lee. 2006. Chattering problem in sliding mode control systems. Proceedings of International Workshop on Variable Structure Systems IEEE, Alghero, Sardinia, 346–50. doi:10.1109/VSS.2006.1644542.
  • Wang, J., L. He, and M. Sun. 2010. Application of active disturbance rejection control to integrated flight-propulsion control. Proceedings of Chinese Control and Decision Conference, Xuzhou, China, 2565–69. doi:10.1109/CCDC.2010.5498776.
  • Wang, Y. W., K. X. Xing, and J. Ma. 2017. Implementation and design of active disturbance rejection control for the linear inverted pendulum. Control Engineering of China 24 (4):711–15.
  • Wang, F., R. J. Wang, and E. H. Liu. 2019. Analysis and tuning for active disturbance rejection control. Mathematical Problems in Engineering 1:1–11. doi:10.1155/2019/9641723.
  • Wang, Y., Z. Chen, M. Sun, and Q. Sun. 2022. Design and stability analysis of a generalized reduced-order active disturbance rejection controller. Science China Technological Sciences 65:361–74. doi:10.1007/s11431-020-1803-4.
  • Wessels, C., and F. W. Fuchs. 2010. Fault ride through of DFIG wind turbines during symmetrical voltage dip with crowbar or stator current feedback solution. Proceedings of Energy Conversion Congress and Exposition IEEE, Atlanta, GA, USA, 2771–77. doi:10.1109/ECCE.2010.5618076.
  • Wu, Z. Q., Y. Yang, and C. H. Xu. 2015. Adaptive fault diagnosis and active tolerant control for wind energy conversion system. International Journal of Control, Automation and Systems 13 (1):120–25. doi:10.1007/s12555-013-0148-z.
  • Xu, L., and P. Cartwright. 2006. Direct active and reactive power control of DFIG for wind energy generation. IEEE Transactions on Energy Conversion 21 (3):750–58. doi:10.1109/TEC.2006.875472.
  • Yang, B., L. Jian, L. Wang, W. Yao, and Q. H. Wu. 2016. Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. International Journal of Electrical Power & Energy Systems Elsevier 74:429–36. doi:10.1016/j.ijepes.2015.07.036.
  • Yang, X., J. Cui, and D. Lao. 2016. Input shaping enhanced active disturbance rejection control for a twin rotor multi-input multi-output system (TRMS). ISA Transactions Elsevier 62:287–98. doi:10.1016/j.isatra.2016.02.001.
  • Yu, Y., H. Wang, X. Shao, and Y. Huang. 2016. The attitude control of UAV in carrier landing based on ADRC. Proceedings of Chinese Guidance, Navigation and Control Conference CGNCC IEEE, Nanjing, China, 832–37. doi:10.1109/CGNCC.2016.7828893.
  • Zhang, R., and J. Q. Han. 2000. Parameter identification by model compensation auto disturbance rejection controller. Control Theory & Applications 17 (1):79–81.
  • Zhao, S., and Z. Gao. 2010. Active disturbance rejection control for non-minimum phase systems. Proceedings of the 29th Chinese Control Conference, Beijing, China, 6066–70.
  • Zhou, Z., H. Peng, B. Liu, W. Wang, G. Niu, and C. Liu. 2021. Power decoupling control of DFIG rotor-side PWM converter based on auto-disturbance rejection control. Wind Energy 1–13. doi:10.1002/we.2662.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.