199
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on photovoltaic/thermal system performance based on microencapsulated phase change material slurry

, , , ORCID Icon & ORCID Icon
Pages 4494-4509 | Received 16 Feb 2022, Accepted 10 May 2022, Published online: 21 May 2022

References

  • Aberoumand, S., S. Ghamari, and B. Shabani. 2018. Energy and exergy analysis of a photovoltaic thermal (PV/T) system using nanofluids: An experimental study. Solar Energy 165:167–77. doi:10.1016/j.solener.2018.03.028.
  • Ali, H. M. 2020. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems - A comprehensive review. Solar Energy 197:163–98.
  • Bai, F. F., M. B. Chen, W. J. Song, Q. Yu, Y. Li, Z. Feng, Y. Ding, et al. 2019. Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate. Energy 167:561–74. doi:10.1016/j.energy.2018.10.137.
  • Carmona, M., B. A. Palacio, and J. D. García. 2021. Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy 172:680–96. doi:10.1016/j.renene.2021.03.022.
  • Chen, S., X. Wang, W. Li, S. Wang, Y. Qi, X. Li, Y. Zhao, T. Zhu, T. Ma, X. Xie, et al. 2017. Experimental study on cooling performance of microencapsulated phase change suspension in a PEMFC. International Journal of Hydrogen Energy 42 (50):30004–12. doi:10.1016/j.ijhydene.2017.08.190.
  • Dai, H., and W. Chen. 2020. Numerical investigation of heat transfer in the double-layered minichannel with microencapsulated phase change suspension. International Communications in Heat and Mass Transfer 119:104918. doi:10.1016/j.icheatmasstransfer.2020.104918.
  • Eisapour, M., A. H. Eisapour, M. J. Hosseini, P. Talebizadehsardari, et al. 2020. Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid. Applied Energy 266:114849. doi:10.1016/j.apenergy.2020.114849.
  • Fayaz, H., R. Nasrin, N. A. Rahim, M. Hasanuzzaman, et al. 2018. Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Solar Energy 169:217–30. doi:10.1016/j.solener.2018.05.004.
  • Fudholi, A., K. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim, H. A. Kazem, et al. 2014. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management 78:641–51. doi:10.1016/j.enconman.2013.11.017.
  • Hu, M., B. Zhao, X. Ao, P. Zhao, Y. Su, G. Pei, et al. 2018. Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system. Applied Energy 231:288–300. doi:10.1016/j.apenergy.2018.09.137.
  • Ibrahim, M., and T. Saeed. 2021. Designing a new heat sink containing nanofluid flow to cool a photovoltaic solar cell equipped with reflector. Journal of the Taiwan Institute of Chemical Engineers 124:9–16. doi:10.1016/j.jtice.2021.05.015.
  • Jia, Y., C. Zhu, and G. Fang. 2020. Performance optimisation of a photovoltaic/thermal collector using microencapsulated phase change slurry. International Journal of Energy Research 44 (3):1812–27. doi:10.1002/er.5028.
  • Kazem, H. A. 2019. Evaluation and analysis of water-based photovoltaic/thermal (PV/T) system. Case Studies in Thermal Engineering 13:100401. doi:10.1016/j.csite.2019.100401.
  • Li, L. Y., D. Q. Zou, X. S. Ma, X. Liu, Z. Hu, J. Guo, Y. Zhu, et al. 2017. Preparation and flow resistance characteristics of novel microcapsule slurries for engine cooling system. Energy Conversion and Management 135:170–77. doi:10.1016/j.enconman.2016.12.043.
  • Liang, R., J. Zhang, L. Ma, Y. Li, et al. 2015. Performance evaluation of new type hybrid photovoltaic/thermal solar collector by experimental study. Applied Thermal Engineering 75:487–92. doi:10.1016/j.applthermaleng.2014.09.075.
  • Liu, L., Y. Jia, Y. Lin, G. Alva, G. Fang, et al. 2017. Performance evaluation of a novel solar photovoltaic–thermal collector with dual channel using microencapsulated phase change slurry as cooling fluid. Energy Conversion and Management 145:30–40. doi:10.1016/j.enconman.2017.04.089.
  • Marudaipillai, S. K., B. K. Ramaraj, R. K. Kottala, et al. 2020. Experimental study on thermal management and performance improvement of solar PV panel cooling using form stable phase change material. Energy Sources Part A Recovery Utilization and Environmental Effects 1–18. doi:10.1080/15567036.2020.1806409.
  • Mishra, R. K., and G. N. Tiwari. 2013. Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode. Solar Energy 90:58–67. doi:10.1016/j.solener.2012.12.022.
  • Pang, W., Y. A. Cui, Q. Zhang, H. Yu, L. Zhang, H. Yan, et al. 2019. Experimental effect of high mass flow rate and volume cooling on performance of a water-type PV/T collector. Solar Energy 188 (8):1360–68. doi:10.1016/j.solener.2019.07.024.
  • Pathak, L., G. V. N. Trivedi, R. Parameshwaran, et al. 2021. Microencapsulated phase change materials as slurries for thermal energy storage: A review. Materials Today: Proceedings 44:1960–63.
  • Ran, F., C. Xu, Y. Chen, R. Cong, G. Fang, et al. 2021. Numerical flow characteristics of microencapsulated phase change slurry flowing in a helically coiled tube for thermal energy storage. Energy 223:120128. doi:10.1016/j.energy.2021.120128.
  • Saxena, A., N. Agarwal, and B. Norton. 2021. Design and performance characteristics of an innovative heat sink structure with phase change material for cooling of photovoltaic system, energy sources, part A: Recovery. Utilization, and Environmental Effects 1–25. doi:10.1080/15567036.2021.1968545.
  • Shahsavar, A. 2021. Experimental evaluation of energy and exergy performance of a nanofluid-based photovoltaic/thermal system equipped with a sheet-and-sinusoidal serpentine tube collector. Journal of Cleaner Production 287:125064. doi:10.1016/j.jclepro.2020.125064.
  • Shahsavar, A., M. Eisapour, and P. Talebizadehsardari. 2020. Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular. Energy 208:118409. doi:10.1016/j.energy.2020.118409.
  • Shen, C., F. Liu, S. Qiu, X. Liu, F. Yao, Y. Zhang, et al. 2021. Numerical study on the thermal performance of photovoltaic thermal (PV/T) collector with different parallel cooling channels. Sustainable Energy Technologies and Assessments 45:101101. doi:10.1016/j.seta.2021.101101.
  • Soltani, S., A. Kasaeian, A. Lavajoo, R. Loni, G. Najafi, O. Mahian, et al. 2020. Exergetic and environmental assessment of a photovoltaic thermal-thermoelectric system using nanofluids: Indoor experimental tests. Energy Conversion and Management 218:112907. doi:10.1016/j.enconman.2020.112907.
  • Tripanagnostopoulos, Y., T. Nousia, M. Souliotis, P. Yianoulis, et al. 2002. Hybrid photovoltaic/thermal Solar Systems. Solar Energy 72 (3):217–34. doi:10.1016/S0038-092X(01)00096-2.
  • Trivedi, G. V. N., and R. Parameshwaran. 2020. Microencapsulated phase change material suspensions for cool thermal energy storage. Materials Chemistry and Physics 242:122519. doi:10.1016/j.matchemphys.2019.122519.
  • Veeramanikandan, M., D. Sathish, L. Jeryrajkumar, et al. 2020. Effective study on developments in photovoltaic thermal (PV/T) water heating system. Materials Today: Proceedings 42:584–89.
  • Yu, Q., A. Romagnoli, R. Yang, D. Xie, C. Liu, Y. Ding, Y. Li, et al. 2019. Numerical study on energy and exergy performances of a microencapsulated phase change material slurry based photovoltaic/thermal module. Energy Conversion and Management 183:708–20. doi:10.1016/j.enconman.2019.01.029.
  • Yuan, W., J. Ji, Z. Li, F. Zhou, X. Ren, X. Zhao, S. Liu, et al. 2018. Comparison study of the performance of two kinds of photovoltaic/thermal(PV/T) systems and a PV module at high ambient temperature. Energy 148:1153–61. doi:10.1016/j.energy.2018.01.121.
  • Zheng, D., J. Wang, Z. Chen, J. Baleta, B. Sundén, et al. 2020. Performance analysis of a plate heat exchanger using various nanofluids. International Journal of Heat and Mass Transfer 158:119993. doi:10.1016/j.ijheatmasstransfer.2020.119993.
  • Zheng, D., J. Yang, J. Wang, S. Kabelac, B. Sundén, et al. 2021. Analyses of thermal performance and pressure drop in a plate heat exchanger filled with ferrofluids under a magnetic field. Fuel 293:1–9. doi:10.1016/j.fuel.2021.120432.
  • Zhou, J., H. Ke, and X. Deng. 2018. Experimental and CFD investigation on temperature distribution of a serpentine tube type photovoltaic/thermal collector. Solar Energy 174:735–42. doi:10.1016/j.solener.2018.09.063.
  • Zhu, X., X. Li, J. Shen, B. Wang, Z. Mao, H. Xu, X. Feng, X. Sui, et al. 2020. Stable microencapsulated phase change materials with ultrahigh payload for efficient cooling of mobile electronic devices. Energy Conversion and Management 223:1–8. doi:10.1016/j.enconman.2020.113478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.