188
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Effect of CaCl2, Al(OH)3 and NH4H2PO4 on the explosion sensitivity of pulverized coal

ORCID Icon, ORCID Icon, , &
Pages 4565-4574 | Received 18 Mar 2022, Accepted 09 May 2022, Published online: 08 Jun 2022

References

  • ASTM E1515-07. 2007. Standard test method for minimum explosible concentration of combustible dusts. West Conshohochen: American Society for Testing and Materials.
  • ASTM E2019-03. 2013. Standard test method for minimum ignition energy of a dust cloud in air. West Conshohocken: American Society for Testing Materials.
  • Bagaria, P., S. Prasad, J. Sun, R. Bellair, and C. Mashug. 2019. Effect of particle morphology on dust minimum ignition energy. Powder Technology 355:1–6. doi:10.1016/j.powtec.2019.07.020.
  • Bai, C., X. Zhang, and B. Chang. 2020. Impacts of turbulence on explosion characteristics of methane-air mixtures with different fuel concentration. Fuel 271:117610. doi:10.1016/j.fuel.2020.117610.
  • Bernard, S., P. Gillard, F. Foucher, and C. Mounaïm-Rousselle. 2012. MIE and flame velocity of partially oxidised aluminium dust. Journal of Loss Prevention in the Process Industries 25 (3):460–66. doi:10.1016/j.jlp.2011.11.013.
  • Boilard, S., P. Amyotte, F. Khan, A. Dastidar, and R. Eckhoff. 2013. Explosibility of micron- and nano-size titanium powders. Journal of Loss Prevention in the Process Industries 26 (6):1646–54. doi:10.1016/j.jlp.2013.06.003.
  • Chang, X., B. Zhang, H. Ng, and C. Bai. 2020. The effects of pre-ignition turbulence by gas jets on the explosion behavior of methane-oxygen mixtures. Fuel 277:118190. doi:10.1016/j.fuel.2020.118190.
  • Dai, H., G. Liang, H. Yin, and Q. Zhao. 2022. Experimental investigation on the inhibition of coal dust explosion by the composite inhibitor of carbamide and zeolite. Fuel 308:121981. doi:10.1016/j.fuel.2021.121981.
  • ISO 11722. 2013. Solid mineral fuels-hard coal-determination of moisture in the general analysis test sample by drying in nitrogen. Geneva, Switzerland: International Standard Organization.
  • Liu, J., Q. Yu, and Q. Guo. 2012. Experimental investigation of liquid disintegration by rotary cups. Chemical Engineering Science 73 (1):44–50. doi:10.1016/j.ces.2012.01.010.
  • Lu, K., X. Chen, Z. Luo, Y. Wang, Y. Su, T. Zhao, and Y. Xiao. 2022. The inhibiting effects of sodium carbonate on coal dust deflagration based on thermal methods. Fuel 315:123122. doi:10.1016/j.fuel.2021.123122.
  • Ren, X., X. Hu, D. Xue, and Y. Li. 2019. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal. Journal of Hazardous Materials 315: 643–654. doi:10.1016/j.jhazmat.2019.03.041.
  • Ren, X., X. Hu, W. Cheng, and S. Bian. 2020. Study of resource utilization and fire prevention characteristics of a novel gel formulated from coal mine sludge (MS). Fuel 267: 117261. doi:10.1016/j.fuel.2020.117261.
  • Sanchirico, R., P. Russo, V. Sarli, and A. Benedetto. 2015a. On the explosion and flammability behavior of mixtures of combustible dusts. Process Safety and Environmental Protection 94:410–19. doi:10.1016/j.psep.2014.09.007.
  • Sanchirico, R., V. Sarli, P. Russo, and A. Benedetto. 2015b. Effect of the nozzle type on the integrity of dust particles in standard explosion tests. Powder Technology 279:203–08. doi:10.1016/j.powtec.2015.04.003.
  • Taveau, J., S. Lemkowitz, S. Hochgreb, and D. Roekaerts. 2018. Dust explosion propagation in small diameter pipes. Process Safety Progress 38. doi:10.1002/prs.12033.
  • Wei, Q., Y. Zhang, K. Chen, B. Liu, and J. Chen. 2021a. Preparation and performance of novel APP/NaY-Fe suppressant for coal dust explosion. Journal of Loss Prevention in the Process Industries 69:104374. doi:10.1016/j.jlp.2020.104374.
  • Wei, X., Y. Zhang, G. Wu, X. Zhang, Y. Zhang, and X. Wang. 2021b. Study on explosion suppression of coal dust with different particle size by shell powder and NaHCO3. Fuel 306:121709. doi:10.1016/j.fuel.2021.121709.
  • Zhang, B., and H. Ng. 2016. An experimental investigation of the explosion characteristics of dimethyl ether-air mixtures. Energy 107:1–8. doi:10.1016/j.energy.2016.03.125.
  • Zhang, J., P. Xu, L. Sun, W. Zhang, and J. Jin. 2018. Factors influencing and a statistical method for describing dust explosion parameters: A review. Journal of Loss Prevention in the Process Industries 56:386–401. doi:10.1016/j.jlp.2018.09.005.
  • Zhang, J., L. Sun, F. Nie, and H. Zhou. 2019. Effects of particle size distribution on the explosion severity of coal dust. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (17):2077–87. doi:10.1080/15567036.2019.1654562.
  • Zhang, B., X. Chang, and C. Bai. 2020. End-wall ignition of methane-air mixtures under the effects of CO2/Ar/N2 fluidic jets. Fuel 270:117485. doi:10.1016/j.fuel.2020.117485.
  • Zhang, J., L. Sun, T. Sun, and H. Zhou. 2020. Study on explosion risk of aluminum powder under different dispersions. Journal of Loss Prevention in the Process Industries 64:104042. doi:10.1016/j.jlp.2019.104042.
  • Zhang, Y., K. Chen, J. Yang, J. Chen, Z. Pan, W. Shi, X. Meng, X. Zhang, and M. He. 2021. The performance and mechanism of the green explosion suppressant SGA for coal dust explosion suppression. ACS Omega 6 (51):35416–26. doi:10.1021/acsomega.1c04791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.