250
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of pulverized coal combustion in rotary kilns with different oxygen concentrations

, &
Pages 4510-4524 | Received 16 Nov 2021, Accepted 09 May 2022, Published online: 24 May 2022

References

  • Al-Abbas, A. H., and J. Naser. 2012. Effect of Chemical Reaction Mechanisms and NOx Modeling on Air-Fired and Oxy-Fuel Combustion of Lignite in a 100-kW Furnace. Energy Fuels 26 (6):3329–48. doi:10.1021/ef300403a.
  • Baulch, D. L., M. Bowers, D. G. Malcom, and R. T. Tuckerman. 1986. Evaluated kinetic data for high-temperature reactions-volume-5.1. Homogeneous gas-phase reactions of the hydroxyl radical with alkanes. J. Phys. Chem. Ref. Data 15 (2):465–592. doi:10.1063/1.555774.
  • Branco, J., P. J. Coelho, and M. Costa. 2016. Experimental and numerical investigation of turbulent diffusion flames in a laboratory combustor with a slot burner. Fuel 175:182–90. doi:10.1016/j.fuel.2016.02.046.
  • Choi, C., C. Lee, and I. S. Kim. 2020. Modeling of flow uniformity by installing inlet distributor within the inflow part of a pressurized module using computational fluid dynamics. Environ. Eng. Res 25 (6):969–76. doi:10.4491/eer.2019.241.
  • Duan, X. Q., Z. Z. Ding, and J. Duan. 2013. Combustion Properties of Pulverized Coal Based on Two-Dimensional Numerical Simulation. J. Iron Steel Res. Int 32:1453–57.
  • Gomez, M. A., J. Porteiro, D. de la Cuesta, D. Patiño, and J. L. Míguez. 2016. Numerical simulation of the combustion process of a pellet-drop-feed boiler. Fuel 184:987–99. doi:10.1016/j.fuel.2015.11.082.
  • Granados, D. A., F. Chejne, and J. M. Mejia. 2015. Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns. Appl. Energy 158:107–17. doi:10.1016/j.apenergy.2015.07.075.
  • Granados, D. A., F. Chejne, J. M. Mejia, C. A. Gómez, A. Berrío, W. J. Jurado, et al. 2014. Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln. Energy 64:615–25. doi:10.1016/j.energy.2013.09.045.
  • Haykiri-Acma, H., Y. Cekic, and S. Yaman. 2019. Unburnt carbon and ashing behavior for slow burning of lignite under oxygen-enriched combustion conditions. Energy Sources Part A-Recovery Util. Environ. Eff 41 (11):1326–35. doi:10.1080/15567036.2018.1548511.
  • Kangwanpongpan, T., R. C. Da Silva, and H. J. Krautz. 2012. Prediction of oxy-coal combustion through an optimized weighted sum of gray gases model. Energy 41:244–51. doi:10.1016/j.energy.2011.06.010.
  • Kiga, T., S. Takano, N. Kimura, K. Omata, M. Okawa, T. Mori, M. Kato, et al. 1997. Characteristics of pulverized-coal combustion in the system of oxygen recycled flue gas combustion. Energy Conv. Manag 38S:S129–S134. doi:10.1016/S0196-8904(96)00258-0.
  • Kolyfetis, E., and N. C. Markatos. 1996. Aerodynamics and coal - Flame modelling in the burning zone of cement rotary kilns.2. ZKG Int 49:326–36.
  • Li, Q., S. X. Mei, J. L. Xie, et al. 2020. Numerical simulation of oxygen-enriched combustion in secondary air of rotary kiln. Chinese J. Eng. Des
  • Li, Z., Y. Gao, S. Wu, Y. Hao, et al. 2021. Numerical investigation of CO2 and NOx emission in a CFB combustor with flue gas recycle and oxy-fuel combustion redesign. Int. J. Glob. Warm. 25(2):177–90. doi:10.1504/IJGW.2021.118359.
  • Liedmann, B., S. Wirtz, V. Scherer, B. Krüger, et al. 2017. Numerical study on the influence of operational settings on refuse derived fuel co-firing in cement rotary kilns. Energy Procedia 120:254–61. doi:10.1016/j.egypro.2017.07.176.
  • Liu, J., D. Tong, Y. X. Zheng, X. Y. Qin, X. Qin, Q. Shi, L. Yan, Y. Lei, and Q. Zhang. 2021. Carbon and air pollutant emissions from China’s cement industry 1990-2015: Trends, evolution of technologies, and drivers. Atmos. Chem. Phys 21 (3):1627–47. doi:10.5194/acp-21-1627-2021.
  • Madlool, N. A., R. Saidur, M. S. Hossain, N. A. Rahim, et al. 2011. A critical review on energy use and savings in the cement industries[J]. Renew. Sust. Energ. Rev. 15(4):2042–60. doi:10.1016/j.rser.2011.01.005.
  • Mujumdar, K. S., and V. V. Ranade. 2008. CFD modeling of rotary cement kilns. Asia-Pac. J. Chem. Eng 3 (2):106–18. doi:10.1002/apj.123.
  • Orooji, Y., M. Javadi, H. Karimi-Maleh, A. Z. Aghaie, K. Shayan, A. L. Sanati, R. Darabi, et al. 2021. Numerical and experimental investigation of natural gas injection effects on NOx reburning at the rotary cement kiln exhaust. Process Saf. Environ. Protect 151:290–98. doi:10.1016/j.psep.2021.05.019.
  • Pan, C., L. Zhang, Z. Mao, et al. 2015. Numerical Simulation on Mild-Oxyfuel Combustion of Pulverized Coal at Different Excess Oxygen Coefficients. J. Power Sources 35 (12):956–63.
  • Pan, G., F. Liu, J. Ye, et al. 2017. Numerical Simulation of Flow in Precalciner under the Condition of Oxygen-Enriched Combustion. Bull. Am. Ceram. Soc 36 (10):3561–65.
  • Pieper, C. 2021. Numerical investigation of the impact of coating layers on RDF combustion and clinker properties in rotary cement kilns. Fuel 10:283–88.
  • Pieper, C., S. Wirtz, S. Schaefer, V. Scherer, et al. 2021. Numerical investigation of the impact of coating layers on RDF combustion and clinker properties in rotary cement kilns. Fuel 283:118951. doi:10.1016/j.fuel.2020.118951.
  • Rahmanian, B. 2014. Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion. Energy Conv. Manag 73:1222–35.
  • Rahmanian, B., M. R. Safaei, S. N. Kazi, G. Ahmadi, H. F. Oztop, and K. Vafai. 2014. Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion. Appl. Therm. Eng 73 (1):1222–35. doi:10.1016/j.applthermaleng.2014.09.016.
  • S, X. S., F. Pei, H. J. L, et al. 2020. Numerical simulation and reliability verification of pulverized coal combustion in rotary kiln and decomposing furnace under O2/CO2 condition. Chinese J. Environ. Eng 14 (5):1311–19.
  • Shen, W., L. Cao, Q. Li, W. Zhang, G. Wang, C. Li, et al. 2015. Quantifying CO2 emissions from China’s cement industry.Renew. Sust. Energ. Rev 50:1004–12. doi:10.1016/j.rser.2015.05.031.
  • Szczerba, J., E. Sniezek, and V. Antonovic. 2017. Evolution of Refractory Materials for Rotary Cement Kiln Sintering Zone. Refract. Ind. Ceram 58 (4):426–33. doi:10.1007/s11148-017-0123-y.
  • Wang, M. Y., B. Liao, Y. Q. Liu, S. Wang, S. Qing, and A. Zhang. 2016. Numerical simulation of oxy-coal combustion in a rotary cement kiln. Appl. Therm. Eng 103:491–500. doi:10.1016/j.applthermaleng.2016.04.028.
  • Xu, X., L. Wang, and Y. Y. Qi. 2013. Study on Influence on Clinker Burning of the Rotary Kiln L/D Ratio from Heat Transfer in Rotary Kiln. J. Wuhan Univ. Technol.-Mat. Sci. Edit 35:29–33.
  • Zhang, L. J., and D. Tang. 2021. Numerical simulation of NO x emission for pulverized coal staged combustion in rotary kiln. Industrial Furnace 43 (2):16–19, 25.
  • Zhao, Y., W. Zhang, D. Feng, P. Wang, S. Sun, J. Wu, P. Li, et al. 2020. Experimental study of the flame propagation characteristics of pulverized coal in an O2/CO2 atmosphere. Fuel 262 (116678). doi: 10.1016/j.fuel.2019.116678.
  • Zhu, G. Q., Y. H. Gong, Y. Q. Niu, and S. Wang. 2021. Study on NOx emissions during the coupling process of preheating-combustion of pulverized coal with multi-air staging. J. Clean Prod 22:291–92.
  • Zhu, T., Y. Hu, C. Tang, L. Wang, X. Liu, L. Deng, D. Che, et al. 2020. Experimental study on NOx formation and burnout characteristics of pulverized coal in oxygen enriched and deep-staging combustion. Fuel. 272(117639):117639. doi:10.1016/j.fuel.2020.117639.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.