385
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Feasibility assessment of utilizing electric vehicles for energy arbitrage in smart grids considering battery degradation cost

ORCID Icon & ORCID Icon
Pages 4664-4678 | Received 21 Feb 2022, Accepted 10 May 2022, Published online: 26 May 2022

References

  • Affonso, C. M., and M. Kezunovic. 2018. Probabilistic assessment of electric vehicle charging demand impact on residential distribution transformer aging. In 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems. IEEE. 1–6. (PMAPS)
  • Ahmadian, A., M. Sedghi, A. Elkamel, M. Fowler, and M. Aliakbar Golkar. 2018. Plug-in electric vehicle batteries degradation modeling for smart grid studies: review, assessment and conceptual framework. Renewable and Sustainable Energy Reviews 81:2609–24. doi:10.1016/j.rser.2017.06.067.
  • Alame, D., M. Azzouz, and N. Kar. 2020. Assessing and mitigating impacts of electric vehicle harmonic currents on distribution systems. Energies 13 (12):3257. doi:10.3390/en13123257.
  • Arnaudo, M., M. Topel, and B. Laumert. 2020. Vehicle-to-grid for peak shaving to unlock the integration of distributed heat pumps in a Swedish neighborhood. Energies 13 (7):1705. doi:10.3390/en13071705.
  • Ayyadi, S., H. Bilil, and M. Maaroufi. 2019. Optimal charging of electric vehicles in residential area. Sustainable Energy, Grids and Networks 19:100240. doi:10.1016/j.segan.2019.100240.
  • Cao, Y., S. Tang, L. Canbing, P. Zhang, Y. Tan, Z. Zhang, and L. Junxiong. 2011. An optimized EV charging model considering TOU price and SOC curve. IEEE Transactions on Smart Grid 3 (1):388–93. doi:10.1109/TSG.2011.2159630.
  • Chen, N., C. Wei Tan, and T. Q. S. Quek. 2014. Electric vehicle charging in smart grid: Optimality and valley-filling algorithms. IEEE Journal of Selected Topics in Signal Processing 8 (6):1073–83. doi:10.1109/JSTSP.2014.2334275.
  • Crozier, C., M. Deakin, T. Morstyn, and M. McCulloch. 2020. Coordinated electric vehicle charging to reduce losses without network impedances. IET Smart Grid 3 (5):677–85. doi:10.1049/iet-stg.2019.0216.
  • CVX Research, Inc. CVX: Matlab software for disciplined convex programming, version 2.0. http://cvxr.com/cvx August 2012.
  • De Hoog, J., T. Alpcan, M. Brazil, D. Anne Thomas, and I. Mareels. 2014. Optimal charging of electric vehicles taking distribution network constraints into account. IEEE Transactions on Power Systems 30 (1):365–75. doi:10.1109/TPWRS.2014.2318293.
  • Deilami, S., A. S. Masoum, P. S. Moses, and M. A. S. Masoum. 2011. Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Transactions on Smart Grid 2 (3):456–67. doi:10.1109/TSG.2011.2159816.
  • EN50160. 2001. Voltage characteristics of electricity supplied by public distribution systems. CENELEC.
  • Fischer, D., A. Harbrecht, A. Surmann, and R. McKenna. 2019. Electric vehicles’ impacts on residential electric local profiles–a stochastic modelling approach considering socio-economic, behavioural and spatial factors. Applied Energy 233-234:644–58. doi:10.1016/j.apenergy.2018.10.010.
  • Global EV Outlook 2020. Entering the decade of electric drive. Technical report, International Energy Agency
  • Guille, C., and G. Gross. 2009. A conceptual framework for the vehicle-to-grid (v2g) implementation. Energy Policy 37 (11):4379–90. doi:10.1016/j.enpol.2009.05.053.
  • Jin, C., J. Tang, and P. Ghosh. 2013. Optimizing electric vehicle charging: A customer’s perspective. IEEE Transactions on Vehicular Technology 62 (7):2919–27. doi:10.1109/TVT.2013.2251023.
  • Kiaee, M., A. Cruden, and S. Sharkh. 2015. Estimation of cost savings from participation of electric vehicles in vehicle to grid (V2G) schemes. Journal of Modern Power Systems and Clean Energy 3 (2):249–58. doi:10.1007/s40565-015-0130-2.
  • Kumar Nunna, H. S. V. S., S. Battula, S. Doolla, and D. Srinivasan. 2016. Energy management in smart distribution systems with vehicle-to-grid integrated microgrids. IEEE Transactions on Smart Grid 9 (5):4004–16. doi:10.1109/TSG.2016.2646779.
  • Lakshminarayanan, V., V. Gowtam S Chemudupati, S. Kumar Pramanick, and K. Rajashekara. 2018. Real-time optimal energy management controller for electric vehicle integration in workplace microgrid. IEEE Transactions on Transportation Electrification 5 (1):174–85. doi:10.1109/TTE.2018.2869469.
  • Liu, M., P. Mcnamara, R. Shorten, and S. Mcloone. 2015. Residential electrical vehicle charging strategies: The good, the bad and the ugly. Journal of Modern Power Systems and Clean Energy 3 (2):190–202. doi:10.1007/s40565-015-0122-2.
  • Meghana, P., C. Yammani, S. Reddy Salkuti . 2022. Blockchain technology based decentralized energy management in multi-microgrids including electric vehicles. Journal of Intelligent & Fuzzy Systems 42 (2):991–1002. doi:10.3233/JIFS-189766.
  • Mehta, R., D. Srinivasan, A. M. Khambadkone, J. Yang, and A. Trivedi. 2016. Smart charging strategies for optimal integration of plug-in electric vehicles within existing distribution system infrastructure. IEEE Transactions on Smart Grid 9 (1):299–312. doi:10.1109/TSG.2016.2550559.
  • Muratori, M. 2018. Impact of uncoordinated plug-in electric vehicle charging on residential power demand. Nature Energy 3 (3):193–201. doi:10.1038/s41560-017-0074-z.
  • Ortega-Vazquez, M. A. 2014. Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty. IET Generation, Transmission & Distribution 8 (6):1007–16. doi:10.1049/iet-gtd.2013.0624.
  • Paterakis, N. G., I. N. Pappi, O. Erdinc, R. Godina, E. M. G. Rodrigues, and J. P. S. Catalão. 2015. Consideration of the impacts of a smart neighborhood load on transformer aging. IEEE Transactions on Smart Grid 7 (6):2793–802. doi:10.1109/TSG.2015.2501380.
  • Patil, H., and V. N. Kalkhambkar. 2021. Grid integration of electric vehicles for economic benefits: A review. Journal of Modern Power Systems and Clean Energy 9 (1):13–26. doi:10.35833/MPCE.2019.000326.
  • Polat, Ö., O. Hakkı Eyüboğlu, and Ö. Gül. 2021. Monte Carlo simulation of electric vehicle loads respect to return home from work and impacts to the low voltage side of distribution network. Electrical Engineering 103 (1):439–45. doi:10.1007/s00202-020-01093-5.
  • Rabiul Islam, M., L. Haiyan, J. Hossain, M. Rabiul Islam, and L. Li. 2020. Multiobjective optimization technique for mitigating unbalance and improving voltage considering higher penetration of electric vehicles and distributed generation. IEEE Systems Journal 14 (3):3676–86. doi:10.1109/JSYST.2020.2967752.
  • Reddy Salkuti, S. Optimal operation of microgrid considering renewable energy sources, electric vehicles and demand response. In E3S Web of Conferences, Hyderabad, India, vol 87, p01007. EDP Sciences, 2019.
  • Richardson, P., D. Flynn, and A. Keane. 2011. Optimal charging of electric vehicles in low voltage distribution systems. IEEE Transactions on Power Systems 27 (1):268–79. doi:10.1109/TPWRS.2011.2158247.
  • Sandeep, V., S. Shastri, A. Sardar, and S. Reddy Salkuti. 2020. Modeling of battery pack sizing for electric vehicles. International Journal of Power Electronics and Drive Systems 11 (4):1987.
  • Shahnia, F., A. Ghosh, G. Ledwich, and F. Zare. 2013. Predicting voltage unbalance impacts of plug-in electric vehicles penetration in residential low-voltage distribution networks. Electric Power Components and Systems 41 (16):1594–616. doi:10.1080/15325008.2013.834004.
  • Sortomme, E., and M. A. El-Sharkawi. 2010. Optimal charging strategies for unidirectional vehicle- to-grid. IEEE Transactions on Smart Grid 2 (1):131–38. doi:10.1109/TSG.2010.2090910.
  • Surender Reddy, S., and P. R. Bijwe. 2015. Real time economic dispatch considering renewable energy resources. Renewable Energy 83:1215–26. doi:10.1016/j.renene.2015.06.011.
  • Turker, H., and S. Bacha. 2018. Optimal minimization of plug-in electric vehicle charging cost with vehicle-to-home and vehicle-to-grid concepts. IEEE Transactions on Vehicular Technology 67 (11):10281–92. doi:10.1109/TVT.2018.2867428.
  • U.S. Energy Information Administration (EIA), Independent statistics and analysis. prices and factors affecting prices 2021. Accessed 20 February 2022. https://www.eia.gov/energyexplained/electricity/prices-and-factors-affecting-prices.php
  • Veldman, E., and R. A. Verzijlbergh. 2014. Distribution grid impacts of smart electric vehicle charging from different perspectives. IEEE Transactions on Smart Grid 6 (1):333–42. doi:10.1109/TSG.2014.2355494.
  • Visakh, A., and M. P. Selvan. 2022. Energy-cost minimization with dynamic smart charging of electric vehicles and the analysis of its impact on distribution-system operation. Electrical Engineering:1–13.
  • Visakh, A., and M. P. Selvan. 2022. Smart charging of electric vehicles to minimize the cost of charging and the rate of transformer aging in a residential distribution network. Turkish Journal of Electrical Engineering & Computer Sciences 30 (3):927–42.
  • Yang, G., F. Marra, M. Juamperez, S. Bækhøj Kjær, S. Hashemi, J. Østergaard, H. Henrik Ipsen, and K. H. B. Frederiksen. 2015. Voltage rise mitigation for solar PV integration at LV grids studies from PVNET. dk. Journal of Modern Power Systems and Clean Energy 3 (3):411–21. doi:10.1007/s40565-015-0132-0.
  • Yifeng, H., B. Venkatesh, and L. Guan. 2012. Optimal scheduling for charging and discharging of electric vehicles. IEEE Transactions on Smart Grid 3 (3):1095–105. doi:10.1109/TSG.2011.2173507.
  • Zhang, H., H. Zechun, X. Zhiwei, and Y. Song. 2016. Evaluation of achievable vehicle-to-grid capacity using aggregate PEV model. IEEE Transactions on Power Systems 32 (1):784–94. doi:10.1109/TPWRS.2016.2561296.
  • Zhongjing, M., D. Callaway, and I. Hiskens. Decentralized charging control for large populations of plug-in electric vehicles: application of the Nash certainty equivalence principle. In 2010 IEEE International Conference on Control Applications, Yokohama, Japan, p 191–95. IEEE, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.