77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical and experimental methods in investigating measures for achieving low pollutant combustion in the residential appliances

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4614-4629 | Received 20 Dec 2021, Accepted 12 May 2022, Published online: 24 May 2022

References

  • Andreu, A., Brunner, C., M. Calderoni, C. Cremenescu, H. Madani, D. Pearson, D. Rutz, B. Schmitt, R. R. Schmidt, Ø. Skreiberg, J. Urchueguia, Van Helden, W., Willis, M., et al. 2050. vision for 100% renewable heating and cooling in Europe: RHC-Platform; 2019.
  • Barbas, N. C. Numerical study of a domestic pellet-fired boiler. [ thesis]. Lisboa: Tecnico; 2016.
  • Boström, C.-E., P. Gerde, A. Hanberg, B. Jernström, C. Johansson, T. Kyrklund, A. Rannug, M. Törnqvist, K. Victorin, and R. Westerholm. 2002. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environmental Health Perspectives 110 Suppl 3:451–88. doi:10.1289/ehp.110-1241197.
  • Collazo, J., J. Porteiro, J. Miguez, E. Granada, and M. Gomez. 2012. Numerical simulation of a small-scale biomass boiler. Energy Conversion and Management 64:87–96. doi:10.1016/j.enconman.2012.05.020.
  • Commission regulation (EU) 2015/1185 of 24 April 2015 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for solid fuel local space heaters
  • Commission regulation (EU) 2015/1189 of 28 April 2015 implementing Directive 2009/125/EC of the European. Parliament ant of the Council with regard to ecodesign requirements for solid fuel boilers.
  • EN 14785:2006. 2006. Residential space heating appliances fired by wood pellets – Requirements and test methods EN 14785:2006.
  • EN 303-5:2021. 2021. Heating boilers – Part 5: Heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW – Terminology, requirements, testing and marking.
  • Horvat, I., and D. Dovic. 2018. COMBUSTION OF AGRICULTURAL BIOMASS - ISSUES AND SOLUTIONS. Transactions of Famena 42 (Si1):75–86. doi:10.21278/TOF.42Si107.
  • Horvat, I., D. Dović, and P. Filipović. Laboratory testing of domestic hot water boiler while fired with different biomass pellets. 13th Conference on sustainable development of energy, water and enviroment systems; 2018; Palermo, Italy: SDEWES.
  • Horvat, I. Numerical-experimental suitability analysis of using agricultural biomass in hot water boilers. [ dissertation]. Zagreb: University of Zagreb; 2020.
  • Horvat, I., D. Dovic, and P. Filipovic. 2021. Numerical and experimental methods in development of the novel biomass combustion system concept for wood and agro pellets. Energy 231 120929 doi:10.1016/j.energy.2021.120929.
  • Horvat, I., D. Dović, and P. Filipović. Detailed numerical analysis of most commonly used measures for achieving near complete combustion in the residential combustion appliances. Proceedings of the 6th International Conference on Smart and Sustainable Technologies (SliTech) Split and Bol, 2021.
  • Inc Ansys. ANSYS Fluent Theory Guide. 2013.
  • Jordan, C., and M. Harasek. 2010. Improvement of a combustion unit based on a grate furnace for granular dry solid biofuels using cfd methods. Heat Transfer Engineering 31 (9):774–81. doi:10.1080/01457630903501062.
  • Khodaei, H., Y. Al-Abdeli, F. Guzzomi, and G. Yeoh. 2015. An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy 88:946–72. doi:10.1016/j.energy.2015.05.099.
  • Kraiem, N., M. Lajili, L. Limousy, R. Said, and M. Jeguirim. 2016. Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy 107:409–18. doi:10.1016/j.energy.2016.04.037.
  • Lajili, M., M. Jeguirim, N. Kraiem, and L. Limousy. 2015. Performance of a household boiler fed with agropellets blended from olive mill solid waste and pine sawdust. Fuel 153:431–36. doi:10.1016/j.fuel.2015.03.010.
  • Larson, T. V., and J. Q. Koenig. 1994. Wood smoke: emissions and noncancer respiratory effects. Annual Review of Public Health 15 (1):133–56. doi:10.1146/annurev.pu.15.050194.001025.
  • Nussbaumer, T., and Lauber A. Formation mechanisms and physical properties of particles from wood combustion for design and operation of electrostatic precipitators. 18th European Biomass Conference and Exhibition, Lyon, 3–7 May 2010.
  • Nussbaumer, T. 2010. Overview on technologies for biomass combustion and emission levels of particulate matter. Zurich: Verenum Press 3-908705-21-5 .
  • Park, S., S. Kim, K. Oh, L. Cho, M. Kim, I. Jeong, Lee, C., Kim, D., et al. Investigation of agro-byproduct pellet properties and improvement in pellet quality through mixing. Energy, 190 116380 2020 10.1016/j.energy.2019.116380.
  • Porteiro, J., J. Collazo, D. Patino, E. Granada, J. Gonzalez, and J. Miguez. 2009. Numerical modeling of a biomass pellet domestic boiler. Energy & Fuels 23 (2):1067–75. doi:10.1021/ef8008458.
  • Rosendahl, L. 2013. Biomass combustion science, technology and engineering. Netherland: Woodhead Publishing.
  • Roy, M., A. Dutta, and K. Corscadden. 2013. An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace. Applied Energy 108:298–307.
  • Saanum et al, et al. 1995. Emissions from biomass combustion. Norway: Institute of Technology.
  • Shiehnejadhesar, A., R. Scharler, R. Mehrabian, and I. Obernberger. 2015. Development and validation of CFD models for gas phase reactions in biomass grate furnaces considering gas streak formation above the packed bed. Fuel Processing Technology 139:142–58. doi:10.1016/j.fuproc.2015.07.029.
  • Yang, B., L. Peng, Y. Wang, and J. Song. 2018. The characteristics of air pollutants from the combustion o biomass pellets. Energy Sources Part a-Recovery Utilization and Environmental Effects 40 (3):351–57. doi:10.1080/15567036.2017.1419515.
  • Yin, C., L. Rosendahl, and S. Kaer. 2008. Grate-firing of biomass for heat and power production. Progress in Energy and Combustion Science 34 (6):725–54. doi:10.1016/j.pecs.2008.05.002.
  • Zeng, T., N. Weller, A. Pollex, and V. Lenz. 2016. Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel 184:689–700. doi:10.1016/j.fuel.2016.07.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.