316
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation and drying kinetics of mixed type solar dryer with thermal energy storage material for drying of apple slices

ORCID Icon, &
Pages 4763-4782 | Received 16 Feb 2022, Accepted 06 May 2022, Published online: 31 May 2022

References

  • Aghbashlo, M., M. H. Kianmehr, and A. Arabhosseini. 2009. Modeling of thin-layer drying of potato slices in length of continuous band dryer. Energy Conversion and Management 50 (5):1348–55. doi:10.1016/j.enconman.2009.01.004.
  • Akpinar, E. K. 2010. Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses. Energy Conversion and Management 51 (12):2407–18. doi:10.1016/j.enconman.2010.05.005.
  • Aktaş, M., İ. Ceylan, and S. Yilmaz. 2009. Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination 239:266–75. doi:10.1016/j.desal.2008.03.023.
  • Alimohammadi, Z., H. S. Akhijahani, and P. Salami. 2020. Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods. Solar Energy 201:157–77. doi:10.1016/j.solener.2020.02.079.
  • Andharia, J. K., P. Bhattacharya, and S. Maiti. 2020. Development and performance analysis of a mixed mode solar thermal dryer for drying of natural rubber sheets in the north-eastern part of India. Solar Energy 208:1091–102. doi:10.1016/j.solener.2020.08.051.
  • Atalay, H., M. Çoban, and O. Kıncay. 2017. Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system. Energy 134:382–91.
  • Atalay, H., M. Ç. Turhan, and O. Kıncay. 2017. Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system. Energy 134:382–91. doi:10.1016/j.energy.2017.06.030.
  • Atalay, H. 2019. Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system. Energy 172:1037–52. doi:10.1016/j.energy.2019.02.023.
  • Bal, L. M., S. Satya, S. N. Naik, and V. Meda. 2011. Review of solar dryers with latent heat storage systems for agricultural products. Renewable and Sustainable Energy Reviews 15 (1):876–80. doi:10.1016/j.rser.2010.09.006.
  • Benhamza, A., A. Boubekri, A. Atia, T. Hadibi, and M. Arıcı. 2021. Drying uniformity analysis of an indirect solar dryer based on computational fluid dynamics and image processing. Sustainable Energy Technologies and Assessments 47:101466. doi:10.1016/j.seta.2021.101466.
  • Bhardwaj, A. K., R. Kumar, S. Kumar, B. Goel, and R. Chauhan. 2021. Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM. Sustainable Energy Technologies and Assessments 45:101119. doi:10.1016/j.seta.2021.101119.
  • César, L.-V., C.-M. A. Lilia, G.-V. Octavio, P. F. Isaac, and B. O. Rogelio. 2020. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy 147 (1):845–55. doi:10.1016/j.renene.2019.09.018.
  • César, L.-V., C.-M. A. Lilia, G.-V. Octavio, S. S. Orlando, and D. N. Alfredo. 2021. Energy and exergy analyses of a mixed-mode solar dryer of pear slices (Pyrus communis L). Energy 220:119740. doi:10.1016/j.energy.2020.119740.
  • Chhinnan, M. S. 1984.Evaluation of selected mathematical models for describing thin layer drying of in-shell pecans. Transactions - American Society of Agricultural Engineers. Vol. 27, 610–15 doi:10.13031/2013.32837
  • Das, M., and E. K. Akpinar. 2020. Determination of thermal and drying performances of the solar air dryer with solar tracking system: Apple drying test. Case Studies in Thermal Engineering 21:100731. doi:10.1016/j.csite.2020.100731.
  • Diamante, L. M., and P. A. Munro. 1991. Mathematical modeling of hot air drying of sweet potato slices. International Journal of Food Science Technology 26:91–99.
  • Downing, D. L. 1989. Processed Apple Products. New York: Springer.
  • Doymaz, I. 2007. Air-drying characteristics of tomatoes. Journal of Food Engineeing 78 (4):1291–97. doi:10.1016/j.jfoodeng.2005.12.047.
  • Ekka, J. P., K. Bala, P. Muthukumar, and D. K. Kanaujiya. 2020. Performance analysis of a forced convection mixed mode horizontal solar cabinet dryer for drying of black ginger (Kaempferia parviflora) using two successive air mass flow rates. Renewable Energy 152:55–66. doi:10.1016/j.renene.2020.01.035.
  • Ekka, J. P., P. Muthukumar, K. Bala, D. K. Kanaujiya, and K. Pakshirajan. 2021. Performance studies on mixed-mode forced convection solar cabinet dryer under different air mass flow rates for drying of cluster fig. Solar Energy 229:39–51. doi:10.1016/j.solener.2021.06.086.
  • EL-Mesery, H. S., R. M. Kamel, and R. Z. Emara. 2021. Influence of infrared intensity and air temperature on energy consumption and physical quality of dried apple using hybrid dryer. Case Studies in Thermal Engineering 27:101365. doi:10.1016/j.csite.2021.101365.
  • El-Sebaii, A., and S. Shalaby. 2012. Solar drying of agricultural products: A review. Renewable and Sustainable Energy Reviews 16 (1):37–43. doi:10.1016/j.rser.2011.07.134.
  • Eliçin, A. K., and K. Saçilik. 2005. An Experimental Study for Solar Tunnel Drying of Apple. TARIM BILIMLERI DERGISI 11 (2):207–11.
  • Fath, H. E. S. 1995. Thermal performance of a simple design solar air heater with built-in thermal energy storage system. Energy Conversion and Management 36:989–97. doi:10.1016/0196-8904(94)00069-C.
  • Fudholi, A., K. Sopian, M. Y. Othman, and M. H. Ruslan. 2014. Energy and exergy analyses of solar drying system of red seaweed. Energy and Buildings 68:121–29. doi:10.1016/j.enbuild.2013.07.072.
  • Henderson, S. M. 1974. Progress in developing the thin layer drying equation. Transaction in American Society of Agriculture Engineering 17:1167–68. doi:10.13031/2013.37052.
  • Iranmanesh, M., H. S. Akhijahani, and M. S. B. Jahromia. 2020. CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system. Renewable Energy 145:1192–213. doi:10.1016/j.renene.2019.06.038.
  • Jain, D., and P. Tewari. 2015. Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renewable Energy 80:244–50. doi:10.1016/j.renene.2015.02.012.
  • Janick, J., J. N. Cummins, S. K. Brown, and M. Hemmat. 1996. CHAPTER 1: Apples. Janick, J., Moore, J. N.eds. In Fruit Breed. Volume I , 1–77. Tree and Tropical Fruits, John Wiley & Sons, Inc.
  • Karathanos, V. T. 1999. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering 39:337–44. doi:10.1016/S0260-8774(98)00132-0.
  • Kassem, A. S. 1998 Comparative studies on thin layer drying models for wheat 13th international congress on agricultural engineering, Morocco, February, 2-6, 1998. Vol. 6
  • Khadraoui, A. E., S. Bouadila, S. Kooli, A. Farhat, and A. Guizani. 2017. Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. Journal of Cleaner Production 148:37–48. doi:10.1016/j.jclepro.2017.01.149.
  • Koua, K. B., W. F. Fassinou, P. Gbaha, and S. Toure. 2009. Mathematical modelling of the thin layer solar drying of banana, Mango and cassava. Energy 34 (10):1594–602. doi:10.1016/j.energy.2009.07.005.
  • Koua, B. K., P. M. E. Koffi, and P. Gbaha. 2019. Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences 18 (1):72–82. doi:10.1016/j.jssas.2017.01.002.
  • Kumar, P., and D. Singh. 2020. Advanced technologies and performance investigations of solar dryers: A review. Renewable Energy Focus 35:148–58. doi:10.1016/j.ref.2020.10.003.
  • Lakshmi, D. V. N., P. Muthukumar, A. Layek, and P. K. Nayak. 2019. Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Solar Energy 188:507–18. doi:10.1016/j.solener.2019.06.009.
  • Lewis, W. K. 1921. The Rate of Drying of Solid Materials. The Journal of Industrial and Engineering Chemistry 13 (5):427–32. doi:10.1021/ie50137a021.
  • Lingayat, A., V. Chandramohan, and V. R. K. Raju 2017. “Design, development, and performance of indirect type solar dryer for banana drying,” Energy procedia (International conference on recent advancement in air conditioning and refrigeration), Bhubaneswar, India, 10-12 November 2016, Vol. 109, pp. 409–16. doi:10.1016/j.egypro.2017.03.041.
  • Lingayat, A., V. P. Chandramohan, V. R. K. Raju, and A. Kumar. 2020. Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon. Thermal Science and Engineering Progress 16:100477. doi:10.1016/j.tsep.2020.100477.
  • Madhlopa, A., and G. Ngwalo. 2007. Solar dryer with thermal storage and biomass-backup heater. Solar Energy 81 (4):449–62. doi:10.1016/j.solener.2006.08.008.
  • Mall, P., and D. Singh. 2017. Advanced technologies and experimental investigations in solar dryers: A Review. Indian Journal of Scientific Research 17 (2):145–50.
  • Mall, P., and D. Singh. 2018. Comparative Study of Performance of Indirect Mode with PCM and Mixed Mode Solar Dryer for Coriander Leaves. International Journal of Applied Engineering Research 13 (8):5909–19.
  • Midilli, A., H. Kucuk, and Z. Yapar. 2002. A new model for single layer drying. Drying Technology 20:1503–13. doi:10.1081/DRT-120005864.
  • Moussaoui, H., Y. Bahammou, Z. Tagnamas, M. Kouhila, A. Lamharrar, and A. Idlimam. 2021. Application of solar drying on the apple peels using an indirect hybrid solar-electrical forced convection dryer. Renewable Energy 167:131–40. doi:10.1016/j.renene.2020.12.046.
  • Nazghelichi, T., M. Aghbashlo, and M. H. Kianmehr. 2011. Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture 75 (1):84–91. doi:10.1016/j.compag.2010.09.014.
  • Page, G. E., “Factors influencing the maximum rates of air drying shelled corn in thin layers,” Unpublished master thesis, Purdue University, Lafayette USA, 1949.
  • Poblete, R., and O. Painemal. 2020. Improvement of the solar drying process of sludge using thermal storage. Journal of Environmental Management 255:109883. doi:10.1016/j.jenvman.2019.109883.
  • Sacilik, K., R. Keskin, and A. K. Elicin. 2006. Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering 73 (3):231–38. doi:10.1016/j.jfoodeng.2005.01.025.
  • Sekyere, C. K. K., F. K. Forson, and F. W. Adam. 2016. Experimental investigation of the drying characteristics of a mixed mode natural convection solar crop dryer with back up heater. Renewable Energy 92:532–42. doi:10.1016/j.renene.2016.02.020.
  • Seshachalam, K., V. Thottipalayam, and V. Selvaraj. 2017. Drying of carrot slices in a triple pass solar dryer. Thermal Science 21 (2):389–98. doi:10.2298/TSCI17S2389S.
  • Şevik, S., M. Aktaş, E. C. Dolgun, E. Arslan, and A. D. Tuncer. 2019. Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology. Solar Energy 180:537–49. doi:10.1016/j.solener.2019.01.049.
  • Sharaf-Elden, Y. I., J. L. Blaisdell, and M. Y. Hamdy. 1980 A model for ear corn drying . Transactions - American Society of Agricultural Engineers. Vol. 5, 1261–65. doi:10.13031/2013.34757.
  • Singh, D., and P. Mall. 2020. Experimental investigation of thermal performance of indirect mode solar dryer with phase change material for banana slices. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1810825).
  • Subbian, V., K. K. Murugavel, R. S. Raja, and A. M. Shanawaz. 2021.“Experimental investigation and the performance evaluation of a mixed mode solar dryer for coconut“. Materials Today: Proceedings , vol. 45, no. 2, pp. 3662–65 doi:10.1016/j.matpr.2021.01.157.
  • Sukhatme, S. P., and J. K. Nayak. 2017. Solar Energy. 4th ed. India: Mc Graw Hill.
  • Tiwari, G. N., Tiwari A., Shyam. 2016. Flat-Plate Collectors. In Handbook of solar energy: theory, analysis and applications, 177. doi:10.1007/978-981-10-0807-8. Springer Singapore.
  • Tiwari, S., and G. N. Tiwari. 2017. Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector. Solar Energy 128:183–95.
  • Tunde-Akintunde, T. Y. 2011. Mathematical modeling of sun and solar drying of chilli pepper. Renewable Energy 36 (8):2139–45. doi:10.1016/j.renene.2011.01.017.
  • Verma, L. R., R. A. Bucklin, J. B. Endan, and F. T. Wratten. 1985. Effects of drying air parameters on rice drying models. Transactions - American Society of Agricultural Engineers 28:296–301. doi:10.13031/2013.32245.
  • Vijayan, S., T. V. Arjunan, and A. Kumar. 2016. Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative Food Science and Emerging Technologies 36:59–67. doi:10.1016/j.ifset.2016.05.014.
  • Wang, G. Y., and R. P. Singh, “A single layer drying equation for rough rice,” American Society of Agricultural Engineers, 78–3001, 1978.
  • Wang, J., Y. S. Xiong, and Y. Yu. 2004. Microwave drying characteristics of potato and the effect of different microwave powers on the dried quality of potato. European Food Research and Technology 219 (5):500–06. doi:10.1007/s00217-004-0979-1.
  • White, G. M., I. J. Ross, and C. J. Poneleit. 1981. Fully exposed drying of popcorn . Transactions - American Society of Agricultural Engineers. Vol. 24, 466–68. doi:10.13031/2013.34276.
  • Yağcıoğlu, A., A. Değirmencioğlu, and F. Çağatay. 1999. Drying characteristics of laurel leaves under different drying conditions. 7th International Congress on AgriculturalMechanization and Energy, Adana, Turkey, 26–27 May . 565–69.
  • Zare, D., S. Minaei, M. Mohamad Zadeh, and M. H. Khoshtaghaza. 2006. Computer simulation of rough rice drying in a batch dryer. Energy Conversion and Management 47 (18–19):3241–54. doi:10.1016/j.enconman.2006.02.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.