482
Views
2
CrossRef citations to date
0
Altmetric
Review

A comprehensive review on performance assessment of solar cavity receiver with parabolic dish collector

, &
Pages 4808-4845 | Received 29 Nov 2021, Accepted 13 May 2022, Published online: 30 May 2022

References

  • Abbasi-Shavazi, E., G. Hughes, and J. Pye. 2015. Investigation of heat loss from a solar cavity receiver. Energy Procedia 69( international Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014):269–78. doi:10.1016/j.egypro.2015.03.031.
  • Affandi, R., M. R. A. Ghani, C. K. Ghan, and L. G. Pheng. 2015. The impact of the solar irradiation, collector and the receiver to the receiver losses in parabolic dish system. Procedia - Social and Behavioral Sciences 195( world Conference on Technology, Innovation and Entrepreneurship):2382–90. doi:10.1016/j.sbspro.2015.06.220.
  • Alipourtarzanagh, E., A. Chinnici, G. J. Nathan, and B. B. Dally. 2020. Experimental insights into the mechanism of heat losses from a cylindrical solar cavity receiver equipped with an air curtain. Solar Energy 201:314–22. doi:10.1016/j.solener.2020.03.004.
  • Alonso, E., C. Pérez-Rábago, J. González-Aguilar, and M. Romero. 2014. A novel lab-scale solar reactor for kinetic analysis of non-volatile metal oxides thermal reductions. In Energy Procedia, Vol. 57, 561–69. UK: 2013 ISES Solar World Congress Elsevier ltd.
  • Alvarado-Juárez, R., M. Montiel-González, H. Villafán-Vidales, C. Estrada, and J. Flores-Navarrete. 2020. Experimental and numerical study of conjugate heat transfer in an open square-cavity solar receiver. International Journal of Thermal Sciences 156:106458. doi:10.1016/j.ijthermalsci.2020.106458.
  • Awasthi, K., and M. K. Khan. 2019. Performance evaluation of coiled tube receiver cavity for a concentrating collector. Renewable Energy 138:666–74. doi:10.1016/j.renene.2019.02.015.
  • Azzouzi, D., B. Boumeddane, and A. Abene. 2017. Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish. Renewable Energy 106:111–21. doi:10.1016/j.renene.2016.12.102.
  • Bamroongkhan, P., C. Lertsatitthanakorn, K. Sathapornprasath, and S. Soponronnarit. 2021. Experimental performance of a photovoltaic-assisted solar parabolic dish thermoelectric system. Case Studies in Thermal Engineering 27:101280. doi:10.1016/j.csite.2021.101280.
  • Behnia, M., J. Reizes, and G. de Vahl Davis. 1990. Combined radiation and natural convection in a rectangular cavity with a transparent wall and containing a non-participating fluid. International Journal for Numerical Methods in Fluids 10 (3):305–25. doi:10.1002/fld.1650100306.
  • Bellos, E., E. Bousi, C. Tzivanidis, and S. Pavlovic. 2019. Optical and thermal analysis of different cavity receiver designs for solar dish concentrators. Energy Conversion and Management: X 2:100013. doi:10.1016/j.ecmx.2019.100013.
  • Bianchini, A., A. Guzzini, M. Pellegrini, and C. Saccani. 2019. Performance assessment of a solar parabolic dish for domestic use based on experimental measurements. Renewable Energy 133:382–92. doi:10.1016/j.renene.2018.10.046.
  • Boerema, N., G. Morrison, R. Taylor, and G. Rosengarten. 2013. High temperature solar thermal central-receiver billboard design. Solar Energy 97:356–68. doi:10.1016/j.solener.2013.09.008.
  • Bopche, S. B., and S. Kumar. 2019. Experimental investigations on thermal performance characteristics of a solar cavity receiver. International Journal of Energy and Environmental Engineering 10 (4):463–81. doi:10.1007/s40095-019-00321-4.
  • Bopche, S., K. Rana, and V. Kumar. 2020. Performance improvement of a modified cavity receiver for parabolic dish concentrator at medium and high heat concentration. Solar Energy 209:57–78. doi:10.1016/j.solener.2020.08.089.
  • Cengel, Y. A., and A. J. Ghajar. 2007. Heat and mass transfer, A practical approach.
  • Chakroun, W., and M. M. A. Quadri. 2002. Heat transfer measurements for smooth and rough tilted semi-cylindrical cavities. International Journal of Thermal Sciences 41 (2):163–72. doi:10.1016/S1290-0729(01)01294-7.
  • Chang, H., C. Duan, K. Wen, Y. Liu, C. Xiang, Z. Wan, S. He, C. Jing, and S. Shu. 2015. Modeling study on the thermal performance of a modified cavity receiver with glass window and secondary reflector. Energy Conversion and Management 106:1362–69. doi:10.1016/j.enconman.2015.10.043.
  • Charalambous, P., S. Kalogirou, G. Maidment, and K. Yiakoumetti. 2011. Optimization of the photovoltaic thermal (pv/t) collector absorber. Solar Energy 85 (5):871–80. doi:10.1016/j.solener.2011.02.003.
  • Chen, C.-F., C.-H. Lin, and H.-T. Jan. 2010. A solar concentrator with two reflection mirrors designed by using a ray tracing method. Optik 121 (11):1042–51. doi:10.1016/j.ijleo.2008.12.010.
  • Chen, S., W. Li, and F. Yan. 2020. Thermal performance analysis of a porous solar cavity receiver. Renewable Energy 156:558–69. doi:10.1016/j.renene.2020.04.077.
  • Chen, X., and X. Yang. 2021. Solar collector with asymmetric compound parabolic concentrator for winter energy harvesting and summer overheating reduction: Concept and prototype device. Renewable Energy 173:92–104. doi:10.1016/j.renene.2021.03.119.
  • Cherif, H., A. Ghomrassi, J. Sghaier, H. Mhiri, and P. Bournot. 2019. A receiver geometrical details effect on a solar parabolic dish collector performance. Energy Reports 5:882–97. doi:10.1016/j.egyr.2019.07.010.
  • Chu, S., F. Bai, X. Zhang, B. Yang, Z. Cui, and F. Nie. 2018. Experimental study and thermal analysis of a tubular pressurized air receiver. Renewable Energy 125:413–24. doi:10.1016/j.renene.2018.02.125.
  • Clausing, A. 1981. An analysis of convective losses from cavity solar central receivers. Solar Energy 27 (4):295–300. doi:10.1016/0038-092X(81)90062-1.
  • Clausing, A. M. 1983 02. Convective losses from cavity solar receivers—comparisons between analytical predictions and experimental results. Journal of Solar Energy Engineering 105 (1):29–33. doi:10.1115/1.3266342.
  • Craig, K., M. Slootweg, W. Le Roux, T. Wolff, and J. Meyer. 2020. Using cfd and ray tracing to estimate the heat losses of a tubular cavity dish receiver for different inclination angles. Solar Energy 211:1137–58. doi:10.1016/j.solener.2020.10.054.
  • Daabo, A. M., S. Mahmoud, and R. K. Al-Dadah. 2016a. The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications. Energy 114:513–25. doi:10.1016/j.energy.2016.08.025.
  • Daabo, A. M., S. Mahmoud, and R. K. Al-Dadah. 2016b. The optical efficiency of three different geometries of a small scale cavity receiver for concentrated solar applications. Applied Energy 179:1081–96. doi:10.1016/j.apenergy.2016.07.064.
  • Dan, A., K. Chattopadhyay, H. C. Barshilia, and B. Basu. 2016. Angular solar absorptance and thermal stability of w/waln/walon/al2o3-based solar selective absorber coating. Applied Thermal Engineering 109( special Issue: Solar Energy Research Institute for India and the United States (SERIIUS) – Concentrated Solar Power):997–1002. doi:10.1016/j.applthermaleng.2016.04.069.
  • Duffie, J. A., W. A. Beckman, and N. Blair. 2020. Solar engineering of thermal processes, photovoltaics and wind 5th . New York: John Wiley & Sons 928.
  • Dunn, R., K. Lovegrove, G. Burgess, and J. Pye. 2012. An experimental study of ammonia receiver geometries for dish concentrators. Journal of Solar Energy Engineering 134 (4). doi:10.1115/1.4006891.
  • Dutta, P. 2017. High temperature solar receiver and thermal storage systems. Applied Thermal Engineering 124:624–32. doi:10.1016/j.applthermaleng.2017.06.028.
  • Elmohlawy, A. E., V. F. Ochkov, and B. I. Kazandzhan. 2019. Thermal performance analysis of a concentrated solar power system (csp) integrated with natural gas combined cycle (ngcc) power plant. Case Studies in Thermal Engineering 14:100458. doi:10.1016/j.csite.2019.100458.
  • Famiglietti, A., A. Lecuona-Neumann, J. Nogueira, and M. Rahjoo. 2020. Direct solar production of medium temperature hot air for industrial applications in linear concentrating solar collectors using an open Brayton cycle. viability analysis. Applied Thermal Engineering 169:114914. doi:10.1016/j.applthermaleng.2020.114914.
  • Fang, J., J. Wei, X. Dong, and Y. Wang. 2011. Thermal performance simulation of a solar cavity receiver under windy conditions. Solar Energy 85 (1):126–38. doi:10.1016/j.solener.2010.10.013.
  • Fang, J., N. Tu, J. F. Torres, J. Wei, and J. D. Pye. 2019. Numerical investigation of the natural convective heat loss of a solar central cavity receiver with air curtain. Applied Thermal Engineering 152:147–59. doi:10.1016/j.applthermaleng.2019.02.087.
  • Gallo, A., J. Spelling, M. Romero, and J. González-Aguilar. 2015. Preliminary design and performance analysis of a multi-megawatt scale dense particle suspension receiver. Energy Procedia 69( international Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014):388–97. doi:10.1016/j.egypro.2015.03.045.
  • Garrido, J., L. Aichmayer, A. Abou-Taouk, and B. Laumert. 2019. Experimental and numerical performance analyses of dish-stirling cavity receivers: Radiative property study and design. Energy 169:478–88. doi:10.1016/j.energy.2018.12.033.
  • Geng, D., J. Cui, and L. Fan. 2021. Performance investigation of a reverse osmosis desalination system powered by solar dish-stirling engine. Energy Reports 7:3844–56. doi:10.1016/j.egyr.2021.06.072.
  • Ghaebi, H., H. Rostamzadeh, J. Rostamzadeh, M. Ebadolahi, and H. Abioghli. 2018. Comparison of different working fluids operation for basic and modified organic rankine cycles (orcs). Journal of Energy Management and Technology 2 (1):23–29.
  • Hassan, A., C. Quanfang, S. Abbas, W. Lu, and L. Youming. 2021. An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator. Renewable Energy 179:1849–64. doi:10.1016/j.renene.2021.07.145.
  • Hernández, N., D. Riveros-Rosas, E. Venegas, R. J. Dorantes, A. Rojas-Morín, O. Jaramillo, C. A. Arancibia-Bulnes, and C. A. Estrada. 2012. EnglishConical receiver for a paraboloidal concentrator with large rim angle. EnglishSolar Energy 86 (4):1053–62.
  • Hinojosa, J., R. Cabanillas, G. Alvarez, and C. Estrada. 2005. Nusselt number for the natural convection and surface thermal radiation in a square tilted open cavity. International Communications in Heat and Mass Transfer 32 (9):1184–92. doi:10.1016/j.icheatmasstransfer.2005.05.007.
  • Hischier, I., P. Leumann, and A. Steinfeld. 2012. Experimental and numerical analyses of a pressurized air receiver for solar-driven gas turbines. Journal of Solar Energy Engineering 134 (2). doi:10.1115/1.4005446.
  • IEA, “Concentrating solar power generation in the sustainable development scenario, 2000-2030 – Charts – Data & statistics.” 2000
  • Islam, M. T., N. Huda, A. Abdullah, and R. Saidur. 2018. A comprehensive review of state-of-the-art concentrating solar power (csp) technologies: Current status and research trends. Renewable and Sustainable Energy Reviews 91:987–1018. doi:10.1016/j.rser.2018.04.097.
  • Jafrancesco, D., J. P. Cardoso, A. Mutuberria, E. Leonardi, I. Les, P. Sansoni, F. Francini, and D. Fontani. 2018. Optical simulation of a central receiver system: Comparison of different software tools. Renewable and Sustainable Energy Reviews 94:792–803. doi:10.1016/j.rser.2018.06.028.
  • Kalogirou, S., R. Agathokleous, G. Barone, A. Buonomano, C. Forzano, and A. Palombo. 2019. Development and validation of a new trnsys type for thermosiphon flat-plate solar thermal collectors: Energy and economic optimization for hot water production in different climates. Renewable Energy 136:632–44. doi:10.1016/j.renene.2018.12.086.
  • Karimi, R., T. T. Gheinani, and V. Madadi Avargani. 2018. A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system. Renewable Energy 125:768–82. doi:10.1016/j.renene.2018.03.015.
  • Karimi, R., T. T. Gheinani, and V. Madadi Avargani. 2019. Coupling of a parabolic solar dish collector to finned-tube heat exchangers for hot air production: An experimental and theoretical study. Solar Energy 187:199–211. doi:10.1016/j.solener.2019.05.050.
  • Kasaeian, A., A. Kouravand, M. A. Vaziri Rad, S. Maniee, and F. Pourfayaz. 2021. Cavity receivers in solar dish collectors: A geometric overview. Renewable Energy 169:53–79. doi:10.1016/j.renene.2020.12.106.
  • Kaushika, N., and K. Reddy. 2000. Performance of a low cost solar paraboloidal dish steam generating system. Energy Conversion and Management 41 (7):713–26. doi:10.1016/S0196-8904(99)00133-8.
  • Khan, M. S., M. Abid, H. M. Ali, K. P. Amber, M. A. Bashir, and S. Javed. 2019. Comparative performance assessment of solar dish assisted s-co2 Brayton cycle using nanofluids. Applied Thermal Engineering 148:295–306. doi:10.1016/j.applthermaleng.2018.11.021.
  • Khubeiz, J. M., E. Radziemska, and W. M. Lewandowski. 2002. Natural convective heat-transfers from an isothermal horizontal hemispherical cavity. Applied Energy 73 (3):261–75. doi:10.1016/S0306-2619(02)00079-X.
  • Kumar, P., and V. Eswaran. 2010. A numerical simulation of combined radiation and natural convection in a differential heated cubic cavity. Journal of Heat Transfer 132 (2). doi:10.1115/1.4000180.
  • Lanchi, M., M. Montecchi, T. Crescenzi, D. Mele, A. Miliozzi, V. Russo, D. Mazzei, M. Misceo, M. Falchetta, and R. Mancini. 2015. Investigation into the coupling of micro gas turbines with csp technology: Omsop project. Energy Procedia 69:1317–26. international Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014. doi:10.1016/j.egypro.2015.03.146.
  • Lee, K. L., M. Jafarian, F. Ghanadi, M. Arjomandi, and G. J. Nathan. 2017. An investigation into the effect of aspect ratio on the heat loss from a solar cavity receiver. Solar Energy 149:20–31. doi:10.1016/j.solener.2017.03.089.
  • Lee, K. L., A. Chinnici, M. Jafarian, M. Arjomandi, B. Dally, and G. Nathan. 2019. The influence of wind speed, aperture ratio and tilt angle on the heat losses from a finely controlled heated cavity for a solar receiver. Renewable Energy 143:1544–53. doi:10.1016/j.renene.2019.05.015.
  • Li, X., W. Kong, Z. Wang, C. Chang, and F. Bai. 2010. Thermal model and thermodynamic performance of molten salt cavity receiver. Renewable Energy 35 (5):981–88. doi:10.1016/j.renene.2009.11.017.
  • Li, S., G. Xu, X. Luo, Y. Quan, and Y. Ge. 2016. Optical performance of a solar dish concentrator/receiver system: Influence of geometrical and surface properties of cavity receiver. Energy 113:95–107. doi:10.1016/j.energy.2016.06.143.
  • Lilliestam, J., M. Labordena, A. Patt, and S. Pfenninger. 2017. Empirically observed learning rates for concentrating solar power and their responses to regime change. Nature Energy 2 (7):1–6. doi:10.1038/nenergy.2017.94.
  • Loni, R., E. Askari Asli-ardeh, B. Ghobadian, A. Kasaeian, and S. Gorjian. 2017a. Thermodynamic analysis of a solar dish receiver using different nanofluids. Energy 133:749–60. doi:10.1016/j.energy.2017.05.016.
  • Loni, R., E. Askari Asli-Ardeh, B. Ghobadian, A. Kasaeian, and S. Gorjian. 2017b. Numerical and experimental investigation of wind effect on a hemispherical cavity receiver. Applied Thermal Engineering 126:179–93. doi:10.1016/j.applthermaleng.2017.07.097.
  • Loni, R., E. A. Asli-Ardeh, B. Ghobadian, and A. Kasaeian. 2018a. Experimental study of carbon nano tube/oil nanofluid in dish concentrator using a cylindrical cavity receiver: Outdoor tests. Energy Conversion and Management 165:593–601. doi:10.1016/j.enconman.2018.03.079.
  • Loni, R., E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and E. Bellos. 2018b. Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: Experimental study. Energy 164:275–87. doi:10.1016/j.energy.2018.08.174.
  • Loni, R., A. Kasaeian, E. Askari Asli-Ardeh, B. Ghobadian, and S. Gorjian. 2018c. Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil. Energy 154:168–81. doi:10.1016/j.energy.2018.04.102.
  • Loni, R., E. Askari Asli-Areh, B. Ghobadian, A. Kasaeian, S. Gorjian, G. Najafi, and E. Bellos. 2020. Research and review study of solar dish concentrators with different nanofluids and different shapes of cavity receiver: Experimental tests. Renewable Energy 145:783–804. doi:10.1016/j.renene.2019.06.056.
  • López-Herraiz, M., A. B. Fernández, N. Martinez, and M. Gallas. 2017. Effect of the optical properties of the coating of a concentrated solar power central receiver on its thermal efficiency. Solar Energy Materials and Solar Cells 159:66–72. doi:10.1016/j.solmat.2016.08.031.
  • Lovegrove, K., G. Burgess, and J. Pye. 2011. A new 500m2 paraboloidal dish solar concentrator. Solar Energy 85 (4):620–26. solarPACES 2009. doi:10.1016/j.solener.2010.01.009.
  • Ma, R. Y., “Wind effects on convective heat loss from a cavity receiver for a parabolic concentrating solar collector,” Sandia National Lab.(SNL-NM), Tech. Rep, Albuquerque, NM (United States); California. 1993.
  • Madadi, V., T. Tavakoli, and A. Rahimi. 2015. Estimation of heat loss from a cylindrical cavity receiver based on simultaneous energy and exergy analyses. Journal of Non-Equilibrium Thermodynamics 40 (1):49–61. doi:10.1515/jnet-2014-0029.
  • Malali, P. D., S. K. Chaturvedi, and R. Agarwala. 2019. Effects of circumsolar radiation on the optimal performance of a stirling heat engine coupled with a parabolic dish solar collector. Applied Thermal Engineering 159:113961. doi:10.1016/j.applthermaleng.2019.113961.
  • Mancini, T. R., J. M. Chavez, and G. J. Kolb. 1994. Solar thermal power today and tomorrow. Mechanical Engineering 116 (8):74.
  • Mancini, T., P. Heller, B. Butler, B. Osborn, W. Schiel, V. Goldberg, R. Buck, R. Diver, C. Andraka, and J. Moreno. May 2003. Dish-stirling systems: An overview of development and status. Journal of Solar Energy Engineering 125(2):135–51. doi: 10.1115/1.1562634.
  • Martínez-Manuel, L., W. Wang, B. Laumert, and M. I. Peña-Cruz. 2021. Numerical analysis on the optical geometrical optimization for an axial type impinging solar receiver. Energy 216:119293. doi:10.1016/j.energy.2020.119293.
  • Michalsky, R., and A. Steinfeld. 2017. Computational screening of perovskite redox materials for solar thermochemical ammonia synthesis from n2 and h2o. Catalysis Today 286( nitrogen Activation):124–30. doi:10.1016/j.cattod.2016.09.023.
  • Mohamad, K., and P. Ferrer. 2021. Thermal performance and design parameters investigation of a novel cavity receiver unit for parabolic trough concentrator. Renewable Energy 168:692–704. doi:10.1016/j.renene.2020.12.089.
  • Msaddak, A., E. Sediki, and M. Ben Salah. 2018. Assessment of thermal heat loss from solar cavity receiver with lattice Boltzmann method. Solar Energy 173:1115–25. doi:10.1016/j.solener.2018.08.059.
  • Ngo, L., T. Bello-Ochende, and J. Meyer. 2015a. Three-dimensional analysis and numerical optimization of combined natural convection and radiation heat loss in solar cavity receiver with plate fins insert. Energy Conversion and Management 101:757–66. doi:10.1016/j.enconman.2015.05.061.
  • Ngo, L., T. Bello-Ochende, and J. Meyer. 2015b. Numerical modelling and optimisation of natural convection heat loss suppression in a solar cavity receiver with plate fins. Renewable Energy 74:95–105. doi:10.1016/j.renene.2014.07.047.
  • Pavlovic, S., E. Bellos, W. G. Le Roux, V. Stefanovic, and C. Tzivanidis. 2017a. Experimental investigation and parametric analysis of a solar thermal dish collector with spiral absorber. Applied Thermal Engineering 121:126–35. doi:10.1016/j.applthermaleng.2017.04.068.
  • Pavlovic, S., A. M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, and R. K. Al-Dadah. 2017b. Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver. Journal of Cleaner Production 150:75–92. doi:10.1016/j.jclepro.2017.02.201.
  • Pavlovic, S., R. Loni, E. Bellos, D. Vasiljević, G. Najafi, and A. Kasaeian. 2018. Comparative study of spiral and conical cavity receivers for a solar dish collector. Energy Conversion and Management 178:111–22. doi:10.1016/j.enconman.2018.10.030.
  • Pavlovic, S., E. Bellos, and R. Loni. 2018. Exergetic investigation of a solar dish collector with smooth and corrugated spiral absorber operating with various nanofluids. Journal of Cleaner Production 174:1147–60. doi:10.1016/j.jclepro.2017.11.004.
  • Prakash, M., S. Kedare, and J. Nayak. 2009. Investigations on heat losses from a solar cavity receiver. Solar Energy 83 (2):157–70. doi:10.1016/j.solener.2008.07.011.
  • Prakash, M. 2014. Numerical study of natural convection heat loss from cylindrical solar cavity receivers. International Scholarly Research Notices 2014:104686. doi:10.1155/2014/104686.
  • Py, X., Y. Azoumah, and R. Olives. 2013. Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries. Renewable and Sustainable Energy Reviews 18:306–15. doi:10.1016/j.rser.2012.10.030.
  • Rafiei, A., A. S. Alsagri, S. Mahadzir, R. Loni, G. Najafi, and A. Kasaeian. 2019. Thermal analysis of a hybrid solar desalination system using various shapes of cavity receiver: Cubical, cylindrical, and hemispherical. Energy Conversion and Management 198:111861. doi:10.1016/j.enconman.2019.111861.
  • Reddy, K., and N. Sendhil Kumar. 2008. Combined laminar natural convection and surface radiation heat transfer in a modified cavity receiver of solar parabolic dish. International Journal of Thermal Sciences 47 (12):1647–57. doi:10.1016/j.ijthermalsci.2007.12.001.
  • Reddy, K., and N. Sendhil Kumar. 2009. An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator. Solar Energy 83 (10):1884–92. doi:10.1016/j.solener.2009.07.001.
  • Reddy, K., and G. Veershetty. 2013. Viability analysis of solar parabolic dish stand-alone power plant for indian conditions. In Applied energy, Vol. 102, special Issue on Advances in sustainable biofuel production and use - XIX International Symposium on Alcohol Fuels, 908–922. Amsterdam: ELsevier Ltd.
  • Reddy, K., T. S. Vikram, and G. Veershetty. 2015. Combined heat loss analysis of solar parabolic dish – Modified cavity receiver for superheated steam generation. Solar Energy 121:78–93. iSES Solar World Congress 2013 (SWC2013) Special Issue. doi:10.1016/j.solener.2015.04.028.
  • Reddy, K., S. K. Natarajan, and G. Veershetty. 2015. Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator. Renewable Energy 74:148–57. doi:10.1016/j.renene.2014.07.058.
  • Reddy, K., G. Veershetty, and T. Srihari Vikram. 2016. Effect of wind speed and direction on convective heat losses from solar parabolic dish modified cavity receiver. Solar Energy 131:183–98. doi:10.1016/j.solener.2016.02.039.
  • Refiei, A., R. Loni, G. Najafi, A. Sahin, and E. Bellos. 2020. Effect of use of mwcnt/oil nanofluid on the performance of solar organic rankine cycle. Energy Reports 6:782–94. doi:10.1016/j.egyr.2020.03.035.
  • Rostami, M., A. Pirvaram, N. Talebzadeh, and P. G. O’Brien. 2021. Numerical evaluation of one-dimensional transparent photonic crystal heat mirror coatings for parabolic dish concentrator receivers. Renewable Energy 171:1202–12. doi:10.1016/j.renene.2021.03.007.
  • Sadeghi, G., H. Safarzadeh, and M. Ameri. 2019. Experimental and numerical investigations on performance of evacuated tube solar collectors with parabolic concentrator, applying synthesized cu2o/distilled water nanofluid. Energy for Sustainable Development 48:88–106. doi:10.1016/j.esd.2018.10.008.
  • Samanes, J., J. García-Barberena, and F. Zaversky. 2015. Modeling solar cavity receivers: A review and comparison of natural convection heat loss correlations. Energy Procedia 69( international Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014):543–52. doi:10.1016/j.egypro.2015.03.063.
  • Sauceda, D., N. Vela´zquez, R. Beltra´n, and M. Quintero, “Thermal analysis of a conical receiver in a parabolloid dish to be used as generator in an advanced solar thermal cooling system,” vol. ANES/ASME 2006 Joint XXXth National Solar Energy Week, pp. 59–65, 10 2006.
  • Sendhil Kumar, N., and K. Reddy. 2008. Comparison of receivers for solar dish collector system. Energy Conversion and Management 49 (4):812–19. doi:10.1016/j.enconman.2007.07.026.
  • Senthil, R., and M. Cheralathan. 2019. Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials. Journal of Energy Storage 25:100841. doi:10.1016/j.est.2019.100841.
  • Sharma, S., A. Sah, C. Subramaniam, and S. K. Saha. 2021. Performance enhancement of tapered helical coil receiver using novel nanostructured carbon florets coating. Applied Thermal Engineering 194:117065. doi:10.1016/j.applthermaleng.2021.117065.
  • Shuai, Y., X.-L. Xia, and H.-P. Tan. 2008. Radiation performance of dish solar concentrator/cavity receiver systems. Solar Energy 82 (1):13–21. doi:10.1016/j.solener.2007.06.005.
  • Si-Quan, Z., L. Xin-Feng, D. Liu, and M. Qing-Song. 2019. A numerical study on optical and thermodynamic characteristics of a spherical cavity receiver. Applied Thermal Engineering 149:11–21. doi:10.1016/j.applthermaleng.2018.10.030.
  • Sinha, R., and N. P. Gulhane. 2020. Numerical study of radiation heat loss from solar cavity receiver of parabolic dish collector. Numerical Heat Transfer, Part A: Applications 77 (7):743–59. doi:10.1080/10407782.2020.1714366.
  • Soltani, S., M. Bonyadi, and V. Madadi Avargani. 2019. A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver. Energy 168:88–98. doi:10.1016/j.energy.2018.11.097.
  • Steinfeld, A., and M. Schubnell. 1993. Optimum aperture size and operating temperature of a solar cavity-receiver. Solar Energy 50 (1):19–25. doi:10.1016/0038-092X(93)90004-8.
  • Steinfeld, A. 2005. Solar thermochemical production of hydrogen––a review. Solar Energy 78 (5):603–15. solar Hydrogen. doi:10.1016/j.solener.2003.12.012.
  • Swanepoel, J. K., W. G. le Roux, A. S. Lexmond, and J. P. Meyer. 2021. Helically coiled solar cavity receiver for micro-scale direct steam generation. Applied Thermal Engineering 185:116427. doi:10.1016/j.applthermaleng.2020.116427.
  • Taibi, E., D. Gielen, and M. Bazilian. 2012. The potential for renewable energy in industrial applications. Renewable and Sustainable Energy Reviews 16 (1):735–44. doi:10.1016/j.rser.2011.08.039.
  • Tan, Y., L. Zhao, J. Bao, and Q. Liu. 2014. Experimental investigation on heat loss of semi-spherical cavity receiver. Energy Conversion and Management 87:576–83. doi:10.1016/j.enconman.2014.06.080.
  • Taumoefolau, T., S. Paitoonsurikarn, G. Hughes, and K. Lovegrove. 2004. Experimental investigation of natural convection heat loss from a model solar concentrator cavity receiver. J. Sol. Energy Eng 126 (2):801–07. doi:10.1115/1.1687403.
  • Thirunavukkarasu, V., and M. Cheralathan. 2020. An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator. Energy 192:116635. doi:10.1016/j.energy.2019.116635.
  • Uzair, M., T. N. Anderson, and R. J. Nates. 2018. Modeling of convective heat loss from a cavity receiver coupled to a dish concentrator. Solar Energy 176:496–505. doi:10.1016/j.solener.2018.10.060.
  • Veeraragavan, A., A. Lenert, B. Yilbas, S. Al-Dini, and E. N. Wang. 2012. Analytical model for the design of volumetric solar flow receivers. International Journal of Heat and Mass Transfer 55 (4):556–64. doi:10.1016/j.ijheatmasstransfer.2011.11.001.
  • Venkatachalam, T., and M. Cheralathan. 2019. Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study. Renewable Energy 139:573–81. doi:10.1016/j.renene.2019.02.102.
  • Vikram, T. S., and K. Reddy. 2014. Estimation of heat losses from modified cavity mono-tube boiler receiver of solar parabolic dish for steam generation. In Energy Procedia, Vol. 57, 371–80. UK: Elsevier Ltd.
  • Vikram, T. S., and K. Reddy. 2015. Investigation of convective and radiative heat losses from modified cavity based solar dish steam generator using ann. International Journal of Thermal Sciences 87:19–30. doi:10.1016/j.ijthermalsci.2014.08.005.
  • Wang, W., B. Wang, L. Li, B. Laumert, and T. Strand. 2016. The effect of the cooling nozzle arrangement to the thermal performance of a solar impinging receiver. Solar Energy 131:222–34. doi:10.1016/j.solener.2016.02.052.
  • Wang, L., Z. Yuan, Y. Zhao, and Z. Guo. 2019. Review on development of small point-focusing solar concentrators. Journal of Thermal Science 28 (5):929–47. doi:10.1007/s11630-019-1134-4.
  • Wang, S., C.-A. Asselineau, Y. Wang, J. Pye, and J. Coventry. 2020. Performance enhancement of cavity receivers with spillage skirts and secondary reflectors in concentrated solar dish and tower systems. Solar Energy 208:708–27. doi:10.1016/j.solener.2020.08.008.
  • Woodhead publishing series in energy. Concentrating solar power technology Principles, Developments and Applications. K. Lovegrove and W. Stein, ed. . 80 High Street, Sawston, Cambridge CB22 3HJ, UK: Woodhead Publishing Series in Energy; 2012:662
  • Wu, S.-Y., L. Xiao, Y. Cao, and Y.-R. Li. 2010. Convection heat loss from cavity receiver in parabolic dish solar thermal power system: A review. Solar Energy 84 (8):1342–55. doi:10.1016/j.solener.2010.04.008.
  • Wu, S.-Y., Z.-G. Shen, and L. Xiao. 2015. Experimental investigation and uncertainty analysis on combined heat losses characteristics of a cylindrical cavity with only bottom wall heated at constant heat flux. Heat Transfer Engineering 36 (6):539–52. doi:10.1080/01457632.2014.939040.
  • Xiao, L., F.-W. Guo, S.-Y. Wu, and Z.-L. Chen. 2020. A comprehensive simulation on optical and thermal performance of a cylindrical cavity receiver in a parabolic dish collector system. Renewable Energy 145:878–92. doi:10.1016/j.renene.2019.06.068.
  • Yan, J., Y. Duo Peng, and Z. Ran Cheng. 2018. Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system. Renewable Energy 129:431–45. doi:10.1016/j.renene.2018.06.025.
  • Yang, S., J. Wang, P. D. Lund, C. Jiang, and B. Huang. 2018a. Design and performance evaluation of a high-temperature cavity receiver for a 2-stage dish concentrator. Solar Energy 174:1126–32. doi:10.1016/j.solener.2018.10.021.
  • Yang, S., J. Wang, P. D. Lund, S. Wang, and C. Jiang. 2018b. Reducing convective heat losses in solar dish cavity receivers through a modified air-curtain system. Solar Energy 166:50–58. doi:10.1016/j.solener.2018.03.027.
  • Yazdanipour, T., F. Shahraki, and D. M. Kalhori. 2020. Experimental analysis of free convection heat loss in a bicylindrical cavity receiver. Thermal Science and Engineering Progress 20:100663. doi:10.1016/j.tsep.2020.100663.
  • Yilmaz, F., M. Ozturk, and R. Selbas. 2020. Thermodynamic investigation of a concentrating solar collector based combined plant for poly-generation. International Journal of Hydrogen Energy progress in Hydrogen Production and Utilization. 45 (49):26 138–26 155. doi:10.1016/j.ijhydene.2019.10.187.
  • Yuan, J. K., C. K. Ho, and J. M. Christian. 2015 06. Numerical simulation of natural convection in solar cavity receivers. Journal of Solar Energy Engineering 137 (3):031004. doi:10.1115/1.4029106.
  • Zeng, K., D. Gauthier, D. P. Minh, E. Weiss-Hortala, A. Nzihou, and G. Flamant. 2017. Characterization of solar fuels obtained from beech wood solar pyrolysis. Fuel 188:285–93. doi:10.1016/j.fuel.2016.10.036.
  • Zhang, Y., H. Xiao, C. Zou, Q. Falcoz, and P. Neveu. 2020. Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe. Energy 193:116775. doi:10.1016/j.energy.2019.116775.
  • Zheng, H. 2017. Solar energy desalination technology. 1st. Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands: Elsevier Ltd. 768.
  • Zhi-Gang, L., T. Da-Wei, L. Tie, and D. Jing-Long. 2011. A hemispherical-involute cavity receiver for stirling engine powered by a xenon arc solar simulator. Chinese Physics Letters 28 (5):054401. doi:10.1088/0256-307X/28/5/054401.
  • Zou, C., Y. Zhang, Q. Falcoz, P. Neveu, C. Zhang, W. Shu, and S. Huang. 2017. Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system. Renewable Energy 103:478–89. doi:10.1016/j.renene.2016.11.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.