144
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Biosorption of Cu(II) ions as a method for the effective use of activated carbon from grape stalk waste: RMS optimization and kinetic studies

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4706-4726 | Received 17 Mar 2022, Accepted 14 May 2022, Published online: 25 May 2022

References

  • Ahmad, Z., B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi, and S. Wang. 2018. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass. Journal of Cleaner Production 180:437–49. doi:10.1016/j.jclepro.2018.01.133.
  • Asadollahzadeh, M., H. Tavakoli, M. Torab-Mostaedi, G. Hosseini, and A. Hemmati. 2014. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid–liquid microextraction for speciation of inorganic arsenic in environmental water samples. Talanta 123:25–31. doi:10.1016/j.talanta.2013.11.071.
  • Basu, M., A. K. Guha, and L. Ray. 2017. Adsorption of lead on cucumber peel. Journal of Cleaner Production 151:603–15. doi:10.1016/j.jclepro.2017.03.028.
  • Belkacem, M., M. Khodir, and S. Abdelkrim. 2008. Treatment characteristics of textile wastewater and removal of heavy metals using the electroflotation technique. Desalination 228 (1–3):245–54. doi:10.1016/j.desal.2007.10.013.
  • Ben Chaabene, W., M. Flah, and M. L. Nehdi. 2020. Machine learning prediction of mechanical properties of concrete: Critical review. Construction and Building Materials 260:119889. doi:10.1016/j.conbuildmat.2020.119889.
  • Bernard, E., A. Jimoh, and J. Odigure. 2013. Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell Research Journal of Chemical Sciences 2231:606.
  • Box, G. E., and K. B. Wilson. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B (Methodological) 13 (1):1–38.
  • Carolin, C. F., P. S. Kumar, A. Saravanan, G. J. Joshiba, and M. Naushad. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering 5 (3):2782–99.
  • Corral Bobadilla, M., R. Lostado Lorza, F. Somovilla Gómez, and R. Escribano García. 2020. Adsorptive of nickel in wastewater by olive stone waste: Optimization through Multi-Response surface methodology using desirability functions. Water 12 (5):1320. doi:10.3390/w12051320.
  • Demiral, H., and C. Güngör. 2016. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. Journal of Cleaner Production 124:103–13. doi:10.1016/j.jclepro.2016.02.084.
  • Deng, L., Y. Liu, T. Huang, and T. Sun. 2016. Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals. Chemical Engineering Journal 287:83–91. doi:10.1016/j.cej.2015.11.011.
  • Dermentzis, K., A. Christoforidis, and E. Valsamidou. 2011. Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. International Journal of Environmental Sciences 1 (5):697–710.
  • Fawzy, M. A., and M. Gomaa. 2020. Use of algal biorefinery waste and waste office paper in the development of xerogels: A low cost and eco-friendly biosorbent for the effective removal of Congo red and Fe (II) from aqueous solutions. Journal of Environmental Management 262:110380. doi:10.1016/j.jenvman.2020.110380.
  • Gelain, L., M. Antunes, J. S. Crespo, and M. Giovanela. 2014. Removal of Zinc(II) from aqueous solutions using an Eco-Friendly biosorbent originating from the winery industry. Separation Science and Technology 49 (14):2212–20. doi:10.1080/01496395.2014.913626.
  • Güzel, F., G. A. Sayğılı, H. Sayğılı, F. Koyuncu, N. Kaya, and S. Güzel. 2021. Performance of grape (Vitis vinifera L.) industrial processing solid waste–derived nanoporous carbon in copper(II) removal. Biomass Conversion and Biorefinery 11 (4):1363–73. doi:10.1007/s13399-020-00787-x.
  • Haydar, S., M. U. Farooq, and S. Gull. 2020. Use of grape vine bark as an effective biosorbent for the removal of heavy metals (copper and lead) from aqueous solutions. Desalination and Water Treatment 183:307–14. doi:10.5004/dwt.2020.25215.
  • Ighalo, J. O., A. G. Adeniyi, O. A. A. Eletta, and L. T. Arowoyele. 2020. Competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) from aqueous media using biochar from oil palm (Elaeis guineensis) fibers: A kinetic and equilibrium study. Indian Chemical Engineer 63(5): 501–511. doi:10.1080/00194506.2020.1787870.
  • Isam, M., L. Baloo, S. R. M. Kutty, and S. Yavari. 2019. Optimisation and modelling of Pb(II) and Cu(II) biosorption onto red algae (Gracilaria changii) by using response surface methodology. Water 11 (11):2325. doi:10.3390/w11112325.
  • Jain, C. K., D. S. Malik, and A. K. Yadav. 2016. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environmental Processes 3 (2):495–523. doi:10.1007/s40710-016-0143-5.
  • John Babu D, King P and Prasanna Kumar Y. (2019). Optimization of Cu (II) biosorption onto sea urchin test using response surface methodology and artificial neural networks. Int. J. Environ. Sci. Technol., 16(4), 1885–1896. 10.1007/s13762-018-1747-2
  • Kalak, T., J. Dudczak-Hałabuda, Y. Tachibana, and R. Cierpiszewski. 2020. Effective use of elderberry (Sambucus nigra) pomace in biosorption processes of Fe(III) ions. Chemosphere 246:125744. doi:10.1016/j.chemosphere.2019.125744.
  • Karaoğlu, M. H., Ş. Zor, and M. Uğurlu. 2010. Biosorption of Cr(III) from solutions using vineyard pruning waste. Chemical Engineering Journal 159 (1):98–106. doi:10.1016/j.cej.2010.02.047.
  • Khelifi, O., A. M. Affoune, M. Nacef, M. L. Chelaghmia, and H. Laksaci. 2021. Response surface modeling and optimization of Ni (II) and Cu (II) ions competitive adsorption capacity by sewage sludge activated carbon. Arabian Journal for Science and Engineering 47: 5797–5809. doi:10.1007/s13369-021-05534-6.
  • Kuhn, M., 2016. Desirability: desirabiliy function optimization and ranking.
  • Li, M., Q. Liu, L. Guo, Y. Zhang, Z. Lou, Y. Wang, and G. Qian. 2013. Cu(II) removal from aqueous solution by spartina alterniflora derived biochar. Bioresource Technology 141:83–88. doi:10.1016/j.biortech.2012.12.096.
  • Lin, L., X. Xu, C. Papelis, T. Y. Cath, and P. Xu. 2014. Sorption of metals and metalloids from reverse osmosis concentrate on drinking water treatment solids. Separation and Purification Technology 134:37–45. doi:10.1016/j.seppur.2014.07.008.
  • Lopes, E. C. N., F. S. C. Dos Anjos, E. F. S. Vieira, and A. R. Cestari. 2003. An alternative avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes. Journal of Colloid and Interface Science 263 (2):542–47. doi:10.1016/S0021-9797(03)00326-6.
  • Mailler, R., J. Gasperi, Y. Coquet, C. Derome, A. Buleté, E. Vulliet, A. Bressy, G. Varrault, G. Chebbo, and V. Rocher. 2016. Removal of emerging micropollutants from wastewater by activated carbon adsorption: Experimental study of different activated carbons and factors influencing the adsorption of micropollutants in wastewater. Journal of Environmental Chemical Engineering 4 (1):1102–09. doi:10.1016/j.jece.2016.01.018.
  • Maliki, S., C. M. Rosnelly, A. Adisalamun, H. Husin, and N. Bilqis, 2019. Removal of Fe (II) in groundwater using rice husk-sourced biosorbent in continuous column adsorption, Bali, Indonesia ,1402, 055007.
  • Manjuladevi, M., R. Anitha, and S. Manonmani. 2018. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from cucumis melo peel. Applied Water Science 8 (1):36.
  • Manzoor, Q., R. Nadeem, M. Iqbal, R. Saeed, and T. M. Ansari. 2013. Organic acids pretreatment effect on rosa bourbonia phyto-biomass for removal of Pb(II) and Cu(II) from aqueous media. Bioresource Technology 132:446–52. doi:10.1016/j.biortech.2013.01.156.
  • Montgomery, D. C. 2017. Design and analysis of experiments. Arizona: John wiley & sons.
  • Nazir, A., F. Zahra, M. U. Sabri, A. Ghaffar, A. Q. Ather, M. I. Khan, and M. Iqbal. 2019. Charcoal prepared from bougainvillea spectabilis leaves as low cost adsorbent: kinetic and equilibrium studies for removal of iron from aqueous solution. Zeitschrift für Physikalische Chemie 1: ahead-of-print.
  • Pavasant, P., R. Apiratikul, V. Sungkhum, P. Suthiparinyanont, S. Wattanachira, and T. F. Marhaba. 2006. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga caulerpa lentillifera. Bioresource Technology 97 (18):2321–29. doi:10.1016/j.biortech.2005.10.032.
  • Pehlivan, E., T. Altun, and S. Parlayıcı. 2009. Utilization of barley straws as biosorbents for Cu2+ and Pb2+ ions. Journal of Hazardous Materials 164 (2):982–86. doi:10.1016/j.jhazmat.2008.08.115.
  • Roy, P., U. Dey, S. Chattoraj, D. Mukhopadhyay, and N. K. Mondal. 2017. Modeling of the adsorptive removal of arsenic(III) using plant biomass: A bioremedial approach. Applied Water Science 7 (3):1307–21. doi:10.1007/s13201-015-0339-2.
  • Samper, E., M. Rodríguez, M. A. De la Rubia, and D. Prats. 2009. Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Separation and Purification Technology 65 (3):337–42. doi:10.1016/j.seppur.2008.11.013.
  • Sandoval, O. G. M., G. C. D. Trujillo, and A. E. L. Orozco. 2018. Amorphous silica waste from a geothermal central as an adsorption agent of heavy metal ions for the regeneration of industrial pre-treated wastewater. Water Resources and Industry 20:15–22. doi:10.1016/j.wri.2018.07.002.
  • Sardella, F., M. Gimenez, C. Navas, C. Morandi, C. Deiana, and K. Sapag. 2015. Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium. Journal of Environmental Chemical Engineering 3 (1):253–60. doi:10.1016/j.jece.2014.06.026.
  • Sheikhi, A., S. H. Mirdehghan, M. M. Arab, M. Eftekhari, H. Ahmadi, S. Jamshidi, and S. Gheysarbigi. 2020. Novel organic-based postharvest sanitizer formulation using box behnken design and mathematical modeling approach: A case study of fresh pistachio storage under modified atmosphere packaging. Postharvest Biology and Technology 160:111047. doi:10.1016/j.postharvbio.2019.111047.
  • Shirzad Siboni, M., M. T. Samadi, J. K. Yang, and S. M. Lee. 2011. Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: A kinetic study. Environmental Technology 32 (14):1573–79. doi:10.1080/09593330.2010.543933.
  • Tavakkoli, H., and M. Yazdanbakhsh. 2013. Fabrication of two perovskite-type oxide nanoparticles as the new adsorbents in efficient removal of a pesticide from aqueous solutions: Kinetic, thermodynamic, and adsorption studies. Microporous and Mesoporous Materials 176:86–94. doi:10.1016/j.micromeso.2013.03.043.
  • Team, R. C., 2013. R core team. R: A language and environment for statistical computing. Foundation for Statistical Computing.
  • Valentín-Reyes, J., R. B. García-Reyes, A. García-González, E. Soto-Regalado, and F. Cerino-Córdova. 2019. Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons. Journal of Environmental Management 236:815–822. doi:10.1016/j.jenvman.2019.02.014.
  • Vunain, E., D. Kenneth, and T. Biswick. 2017. Synthesis and characterization of low-cost activated carbon prepared from Malawian baobab fruit shells by H3PO4 activation for removal of Cu(II) ions: Equilibrium and kinetics studies. Applied Water Science 7 (8):4301–19. doi:10.1007/s13201-017-0573-x.
  • Witek-Krowiak, A., K. Chojnacka, D. Podstawczyk, A. Dawiec, and K. Pokomeda. 2014. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology 160:150–60. doi:10.1016/j.biortech.2014.01.021.
  • Yari, M., M. Rajabi, O. Moradi, A. Yari, M. Asif, S. Agarwal, and V. K. Gupta. 2015. Kinetics of the adsorption of Pb (II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. Journal of Molecular Liquids 209:50–57. doi:10.1016/j.molliq.2015.05.022.
  • Yılmaz, Ş., T. Şahan, and A. Karabakan. 2017. Response surface approach for optimization of Hg(II) adsorption by 3-mercaptopropyl trimethoxysilane-modified kaolin minerals from aqueous solution. Korean J. Chem. Eng 34 (8):2225–35. doi:10.1007/s11814-017-0116-z.
  • Yılmaz, Ş., A. Zengin, and T. Şahan. 2020. A novel material poly(N-acryloyl-L-serine)-brush grafted kaolin for efficient elimination of malachite green dye from aqueous environments. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 601:125041. doi:10.1016/j.colsurfa.2020.125041.
  • Yılmaz, Ş., A. Zengin, T. Şahan, and Ö. S. Zorer. 2021. Utilization of a novel polymer–clay material for high elimination of hazardous radioactive contamination uranium(VI) from aqueous environments. Environmental Technology & Innovation 23:101631. doi:10.1016/j.eti.2021.101631.
  • Yin, P., M. Xu, R. Qu, H. Chen, X. Liu, J. Zhang, and Q. Xu. 2013. Uptake of gold (III) from waste gold solution onto biomass-based adsorbents organophosphonic acid functionalized spent buckwheat hulls. Bioresource Technology 128:36–43. doi:10.1016/j.biortech.2012.10.048.
  • Yin, Z., Y. Liu, S. Liu, L. Jiang, X. Tan, G. Zeng, M. Li, S. Liu, S. Tian, and Y. Fang. 2018. Activated magnetic biochar by one-step synthesis: Enhanced adsorption and coadsorption for 17β-estradiol and copper. Science of the Total Environment 639:1530–42. doi:10.1016/j.scitotenv.2018.05.130.
  • Zazouli, M. A., and R. Ghorbanpour. 2017. The efficiency of grape seeds in removal of hexavalent chromium from aqueous solutions. Journal of Rafsanjan University of Medical Sciences 15 (11):1039–48.
  • Zolgharnein, J., A. Shahmoradi, and J. B. Ghasemi. 2013. Comparative study of Box–Behnken, central composite, and doehlert matrix for multivariate optimization of Pb (II) adsorption onto robinia tree leaves. Journal of Chemometrics 27 (1–2):12–20. doi:10.1002/cem.2487.
  • Zubair, A., H. N. Bhatti, M. A. Hanif, and F. Shafqat. 2008. Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by citrus reticulata waste biomass. Water, Air, and Soil Pollution 191 (1):305–18. doi:10.1007/s11270-008-9626-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.