229
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Ti-Fe-Si/C composites as anode materials for high energy li-ion batteries

, ORCID Icon, & ORCID Icon
Pages 5154-5171 | Received 05 Jan 2022, Accepted 17 May 2022, Published online: 02 Jun 2022

References

  • Al-Maghrabi, M. A., V. L. Chevrier, J. R. Dahn, R. J. Sanderson, and R. A. Dunlap. 2017. Studies of Si-Fe-C Electrode materials prepared by combinatorial sputter deposition. Journal of the Electrochemical Society 164 (2):A498–A507. doi:10.1149/2.1461702jes.
  • Badway, F., I. Plitz, S. Grugeon, S. Laruelle, M. Dolle, A. S. Gozdz, J.-M. Tarascon. 2002. Metal oxides as negative electrode materials in Li-ion cells. Electrochemical and Solid-State Letters 5 (6):A115. doi:10.1149/1.1472303.
  • Bensebaa, Z., B. Bouzabata, and A. Otmani. 2009. Study of nanocrystalline FeSi alloys prepared by mechanical alloying. Journal of Alloys and Compounds 469 (1–2):24–27. doi:10.1016/j.jallcom.2008.01.151.
  • Chamas, M., M. T. Sougrati, C. Reibel, and P. E. Lippens. 2013. Quantitative analysis of the initial restructuring step of nanostructured FeSn2 -Based Anodes for Li-Ion Batteries. Chemistry of Materials 25 (12):2410–20. doi:10.1021/cm400253a.
  • Chamas, M., A. Mahmoud, J. Tang, M. T. Sougrati, S. Panero, and P. E. Lippens. 2017. Aging processes in lithiated FeSn 2 based negative electrode for Li-Ion batteries: A new challenge for tin based intermetallic materials. The Journal of Physical Chemistry C 121 (1):217–24. doi:10.1021/acs.jpcc.6b11302.
  • Chevrier, V. L., and J. R. Dahn. 2009. First Principles Model of Amorphous Silicon Lithiation. Journal of the Electrochemical Society 156 (6):A454. doi:10.1149/1.3111037.
  • Chevrier, V. L., J. W. Zwanziger, and J. R. Dahn. 2009. First principles studies of silicon as negative electrode material for lithium-ion batteries. Canadian Journal of Physics 87 (6):625–32. doi:10.1139/P09-031.
  • Chevrier, V. L., H. M. Dahn, and J. R. Dahn. 2011. Activation energies of crystallization events in electrochemically lithiated silicon. Journal of the Electrochemical Society 158 (11):A1207. doi:10.1149/2.009111jes.
  • Courtney, I. A., and J. R. Dahn. 1997. Electrochemical and In Situ X‐Ray diffraction studies of the reaction of lithium with tin oxide composites. Journal of the Electrochemical Society 144 (6):2045–52. doi:10.1149/1.1837740.
  • Dahal, N., and V. Chikan. 2010. Phase-Controlled Synthesis of Iron Silicide (Fe 3 Si and FeSi 2) nanoparticles in solution. Chemistry of Materials 22 (9):2892–97. doi:10.1021/cm100224b.
  • Deniard, P., A. M. Dulac, X. Rocquefelte, V. Grigorova, O. Lebacq, A. Pasturel, S. Jobic. 2004. High potential positive materials for lithium-ion batteries: Transition metal phosphates. Journal of Physics and Chemistry of Solids 65 (2–3):229–33. doi:10.1016/j.jpcs.2003.10.019.
  • Du, Z., S. N. Ellis, R. A. Dunlap, M. N. Obrovac. 2015. NixSi1-x Alloys prepared by mechanical milling as negative electrode materials for lithium ion batteries. Journal of the Electrochemical Society. 163(2):A13. doi:10.1149/2.0011602jes.
  • Edfouf, Z., C. Fariaut-Georges, F. Cuevas, M. Latroche, T. Hézèque, G. Caillon, C. Jordy, M. T. Sougrati, J. C. Jumas. 2013. Nanostructured Ni3.5Sn4 intermetallic compound: An efficient buffering material for Si-containing composite anodes in lithium ion batteries. Electrochimica Acta 89:365–71. doi:10.1016/j.electacta.2012.11.078.
  • Ehinon, K. K. D., S. Naille, R. Dedryvère, P. E. Lippens, J. C. Jumas, and D. Gonbeau. 2008. Ni3Sn4 Electrodes for Li-Ion Batteries: Li−Sn Alloying Process and Electrode/Electrolyte Interface Phenomena. Chemistry of Materials 20 (16):5388–98. doi:10.1021/cm8006099.
  • Entwistle, J., A. Rennie, and S. Patwardhan. 2018. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. Journal of Materials Chemistry A 6 (38):18344–56. doi:10.1039/c8ta06370b.
  • Feng Yi, T., L. Shi, X. Han, F. Wang, Y. Zhu, and Y. Xie. 2021. Approaching high-performance lithium storage materials by constructing hierarchical CoNiO 2 @CeO 2 Nanosheets. ENERGY & ENVIRONMENTAL MATERIALS 4 (4):586–95. doi:10.1002/eem2.12140.
  • Ferguson, P. P., M. L. Martine, A. E. George, and J. R. Dahn. 2009. Studies of tin-transition metal-carbon and tin-cobalt-transition metal-carbon negative electrode materials prepared by mechanical attrition. Journal of Power Sources 194 (2):794–800. doi:10.1016/j.jpowsour.2009.05.031.
  • Goriparti, S., E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia. 2014. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources 257:421–43. doi:10.1016/j.jpowsour.2013.11.103.
  • Grugeon, S., S. Laruelle, L. Dupont, and J. M. Tarascon. 2003. An update on the reactivity of nanoparticles co-based compounds towards Li. Solid State Sciences 5 (6):895–904. doi:10.1016/S1293-2558(03)00114-6.
  • Guo, S., H. Li, H. Bai, Z. Tao, and J. Chen. 2014. Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. Journal of Power Sources 248. doi:10.1016/j.jpowsour.2013.09.138.
  • Haro, M., T. Song, A. Guerrero, L. Bertoluzzi, J. Bisquert, U. Paik, G. Garcia-Belmonte. 2014. Germanium coating boosts lithium uptake in Si nanotube battery anodes. Physical Chemistry Chemical Physics 16 (33):17930–35. doi:10.1039/c4cp02377c.
  • Hatchard, T. D., and J. R. Dahn. 2004. In Situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of the Electrochemical Society 151 (6):A838. doi:10.1149/1.1739217.
  • Hong, C., Q. Leng, J. Zhu, S. Zheng, H. He, Y. Li, R. Liu, J. Wan, Y. Yang. 2020. Revealing the correlation between structural evolution and Li + diffusion kinetics of nickel-rich cathode materials in Li-ion batteries. Journal of Materials Chemistry A 8 (17):8540–47. doi:10.1039/d0ta00555j.
  • Hou, G., C. Ci, D. Salpekar, Q. Ai, Q. Chen, H. Guo, L. Chen, X. Zhang, J. Cheng, K. Kato, et al. 2020. Stable lithium metal anode enabled by an artificial multi-phase composite protective film. Journal of Power Sources 448:227547. doi:10.1016/j.jpowsour.2019.227547.
  • Hu, L., F. La Mantia, H. Wu, X. Xie, J. McDonough, M. Pasta, Y. Cui. 2011. Lithium-ion textile batteries with large areal mass loading. Advanced Energy Materials 1 (6):1012–17. doi:10.1002/aenm.201100261.
  • Huang, K., S. Bi, B. Kurt, C. Xu, L. Wu, Z. Li, G. Feng, X. Zhang. 2021. Regulation of SEI Formation by Anion Receptors to Achieve Ultra-Stable Lithium-Metal Batteries. Angewandte Chemie International Edition 60 (35):19232–40. doi:10.1002/anie.202104671.
  • Huggins, R. A. 2002. Alternative materials for negative electrodes in lithium systems. Solid State Ionics 152–153:61–68. doi:10.1016/S0167-2738(02)00337-5.
  • Hwa, Y., W. S. Kim, S. H. Hong, and H. J. Sohn. 2012. High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries. Electrochimica Acta 71:201–05. doi:10.1016/j.electacta.2012.03.138.
  • Il Park, H., M. Sohn, J. H. Choi, C. Park, J. H. Kim, and H. Kim. 2016. Microstructural Tuning of Si/TiFeSi2 nanocomposite as lithium storage materials by mechanical deformation. Electrochimica Acta 210:301–07. doi:10.1016/j.electacta.2016.05.168.
  • Jaumann, T., J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, J. Eckert, L. Giebeler. 2015. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders. Physical Chemistry Chemical Physics 17 (38):24956–67. doi:10.1039/c5cp03672k.
  • Jenu, S., I. Deviatkin, A. Hentunen, M. Myllysilta, S. Viik, and M. Pihlatie. 2020. Reducing the climate change impacts of lithium-ion batteries by their cautious management through integration of stress factors and life cycle assessment. Journal of Energy Storage 27 (February):101023. doi:10.1016/j.est.2019.101023.
  • Jung, H., M. Park, Y. G. Yoon, G. B. Kim, and S. K. Joo. 2003 April. Amorphous silicon anode for lithium-ion rechargeable batteries. Journal of Power Sources 115(2):346–51. doi:10.1016/S0378-7753(02)00707-3.
  • Kaun, T. D., P. A. Nelson, L. Redey, D. R. Vissers, and G. L. Henriksen. 1993. High temperature lithium/sulfide batteries. Electrochimica Acta 38 (9):1269–87. doi:10.1016/0013-4686(93)80057-7.
  • Key, B., R. Bhattacharyya, M. Morcrette, V. Seznéc, J. M. Tarascon, and C. P. Grey. 2009. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. Journal of the American Chemical Society 131 (26):9239–49. doi:10.1021/ja8086278.
  • Key, B., M. Morcrette, J. M. Tarascon, and C. P. Grey. 2011. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: Understanding the (de)lithiation mechanisms. Journal of the American Chemical Society 133 (3):503–12. doi:10.1021/ja108085d.
  • Kim, M., J. W. Kim, M. S. Sung, Y. Hwa, S. H. Kim, and H. J. Sohn. 2012. Si nanocrystallites embedded in hard TiFeSi2 matrix as an anode material for Li-ion batteries. Journal of Electroanalytical Chemistry 687:84–88. doi:10.1016/j.jelechem.2012.10.009.
  • Kim, J., O. B. Chae, and B. L. Lucht. 2021. Perspective—structure and stability of the solid electrolyte interphase on silicon anodes of lithium-ion batteries. Journal of the Electrochemical Society 168 (3):030521. doi:10.1149/1945-7111/abe984.
  • Ladam, A., Bibent, N., Cénac-Morthé, C., Aldon, N., Olivier-Fourcade, J., Jumas, J.C., Lippens, P.E. 2017. One-pot ball-milling synthesis of a Ni-Ti-Si based composite as anode material for Li-ion batteries. Electrochimica Acta 245:497–504. doi:10.1016/j.electacta.2017.05.093.
  • Lee, W., J. Lee, J. D. Bae, C. S. Byun, and D. K. Kim. 2001. Syntheses of Ni2Si, Ni5Si2, and NiSi by mechanical alloying. Scripta Materialia 44 (1):97–103. doi:10.1016/S1359-6462(00)00547-9.
  • Lee, H. Y., and S. M. Lee. 2002. Graphite-FeSi alloy composites as anode materials for rechargeable lithium batteries. Journal of Power Sources 112 (2):649–54. doi:10.1016/S0378-7753(02)00461-5.
  • Li, T., Y. L. Cao, X. P. Ai, and H. X. Yang. 2008. Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries. Journal of Power Sources 184 (2):473–76. doi:10.1016/j.jpowsour.2008.02.057.
  • Liu, H., X. Cheng, Y. Chong, H. Yuan, J. Q. Huang, and Q. Zhang. 2021. Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication. Particuology 57:56–71. doi:10.1016/j.partic.2020.12.003.
  • Mahmoud, A., I. Saadoune, P. E. Lippens, M. Chamas, R. Hakkou, and J. M. Amarilla. 2017. The design and study of new Li-ion full cells of LiCo2/3Ni1/6Mn1/6O2 positive electrode paired with MnSn2 and Li4Ti5O12 negative electrodes. Solid State Ionics 300:175–81. doi:10.1016/j.ssi.2016.12.012.
  • Malini, R., U. Uma, T. Sheela, M. Ganesan, and N. G. Renganathan. 2009. Conversion reactions: A new pathway to realise energy in lithium-ion battery - Review. Ionics (Kiel) 15 (3):301–07. doi:10.1007/s11581-008-0236-x.
  • McDowell, M. T., S. W. Lee, W. D. Nix, and Y. Cui. 2013. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Advanced Materials 25 (36):4966–85. doi:10.1002/adma.201301795.
  • Naille, S., J. C. Jumas, P. E. Lippens, and J. Olivier-Fourcade. 2009. 119Sn Mössbauer parameters as predictive tool for future Sn-based negative electrode materials. Journal of Power Sources 189 (1):814–17. doi:10.1016/j.jpowsour.2008.07.058.
  • Obrovac, M. N., and L. Christensen. 2004. Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid-State Letters 7 (5):A93. doi:10.1149/1.1652421.
  • Obrovac, M. N., and L. J. Krause. 2007. Reversible cycling of crystalline silicon powder. Journal of the Electrochemical Society 154 (2):A103. doi:10.1149/1.2402112.
  • Obrovac, M. N., and V. L. Chevrier. 2014. Alloy negative electrodes for Li-ion batteries. Chemical Reviews 114 (23):11444–502. doi:10.1021/cr500207g.
  • Oh, M., I. Kim, H. J. Lee, S. Hyun, and C. Kang. 2018. The role of thermal annealing on the microstructures of (Ti, Fe)-alloyed Si thin-film anodes for high-performance Li-ion batteries. RSC Advances. doi:10.1039/c7ra13172k.
  • Oswald, R. S., M. Ron, and M. Ohring. 1978. Conversion electron Mössbauer study of amorphous FeSi thin films. Solid State Communications 26 (12):883–87. doi:10.1149/1.2402112.
  • Overman, N. R., X. Jiang, R. K. Kukkadapu, T. Clark, T. J. Roosendaal, G. Coffey, J. E. Shield, S. N. Mathaudhu. 2018. Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons. Materials Characterization 136:212–20. doi:10.1016/j.matchar.2017.12.019.
  • Ozanam, F., and M. Rosso. 2016. Silicon as anode material for Li-ion batteries. Materials Science and Engineering: B 213 (213):2–11. doi:10.1016/j.mseb.2016.04.016.
  • Park, C. M., J. H. Kim, H. Kim, and H. J. Sohn. 2010. Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 39 (8):3115–41. doi:10.1039/b919877f.
  • Park, A. R., M. G. Nam, A.-Y. Kim, K. S. Kim, M. S. A. Sher Shah, J. Y. Lee, W.-J. Kim, J. K. Lee, P. J. Yoo. 2017. Si/Co-CoSi2/reduced graphene oxide ternary nanocomposite anodes for Li-Ion batteries with enhanced capacity and cycling stability. Journal of Alloys and Compounds 724:1134–42. doi:10.1016/j.jallcom.2017.07.119.
  • Pathak, A. D., U. K. Chanda, K. Samanta, A. Mandal, K. K. Sahu, and S. Pati. 2019. Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium ion batteries. Electrochimica Acta 317:654–62. doi:10.1016/j.electacta.2019.06.040.
  • Polat, D. B., O. Keles, and K. Amine. 2014. Well-aligned, ordered, nanocolumnar, Cu-Si thin film as anode material for lithium-ion batteries. Journal of Power Sources 270:238–47. doi:10.1016/j.jpowsour.2014.07.087.
  • Rajesh, P. V., A. Das, B. Ghosh, and D. Das. 2019. 57 Fe Mössbauer and XRD studies on β -FeSi 2 prepared by high energy mechanical attrition. Materials Research Express 6 (8):085901. doi:10.1088/2053-1591/aaed16.
  • Reyter, D., S. Rousselot, D. Mazouzi, M. Gauthier, P. Moreau, B. Lestriez, D. Guyomard, L. Roué. 2013. An electrochemically roughened Cu current collector for Si-based electrode in Li-ion batteries. Journal of Power Sources 239:308–14. doi:10.1016/j.jpowsour.2013.03.108.
  • Roy, P., and S. K. Srivastava. 2015. Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A 3 (6):2454–84. doi:10.1039/c4ta04980b.
  • Sun, H., G. Xin, T. Hu, M. Yu, D. Shao, X. Sun, J. Lian. 2014. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nature Communications 5(1). doi: 10.1038/ncomms5526.
  • Tan, X. F., S. D. McDonald, Q. Gu, L. Wang, S. Matsumura, and K. Nogita. 2019. The effects of Ni on inhibiting the separation of Cu during the lithiation of Cu6Sn5 lithium-ion battery anodes. Journal of Power Sources 440:227085. doi:10.1016/j.jpowsour.2019.227085.
  • Tarascon, J. M., and M. Armand. 2010. Issues and challenges facing rechargeable lithium batteries. Mater. Sustain. Energy A Collect. Peer-Reviewed Res. Rev. Artic. from Nat. Publ. Gr 171–79. doi:10.1142/9789814317665_0024.
  • Yoon, T., N. Chapman, D. M. Seo, and B. L. Lucht. 2017. Lithium salt effects on silicon electrode performance and Solid Electrolyte Interphase (SEI) structure, role of solution structure on SEI Formation. Journal of the Electrochemical Society 164 (9):A2082–A2088. doi:10.1149/2.1421709jes.
  • Yu, S. H., X. Feng, N. Zhang, J. Seok, and H. D. Abruña. 2018. Understanding conversion-type electrodes for lithium rechargeable batteries. Accounts of Chemical Research 51 (2):273–81. doi:10.1021/acs.accounts.7b00487.
  • Zhang, W., T. H. Cai, and B. W. Sheldon. 2019. The Impact of Initial SEI formation conditions on strain-induced capacity losses in silicon electrodes. Advanced Energy Materials 9 (5). doi: 10.1002/aenm.201803066.
  • Zhang, L., C. Zhu, S. Yu, D. Ge, and H. Zhou. 2022. Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry 66 (March):260–94. doi:10.1016/J.JECHEM.2021.08.001.
  • Zhao, J., Y. Zhang, Y. Wang, H. Li, and Y. Peng. 2018. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. Journal of Energy Chemistry 27 (6):1536–54. doi:10.1016/j.jechem.2018.01.009.
  • Zhe, C., Y. Yan, S. Xin, W. Li, J. Qu, Y.-G. Guo, W.-G. Song. 2013. Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries. Journal of Materials Chemistry A 1 (37):11404–09. doi:10.1039/c3ta12344h.
  • Zuo, X., J. Zhu, P. Müller-Buschbaum, and Y. J. Cheng. 2017. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 31 (January):113–43. doi:10.1016/J.NANOEN.2016.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.