88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental Analysis of Sustainability of Passive Solar Still with Nanoparticles Operating at Various Angles of Glass Cover

ORCID Icon &
Pages 5227-5245 | Received 17 Feb 2022, Accepted 19 May 2022, Published online: 05 Jun 2022

References

  • Abdullah, A. S., F. A. Essa, Z. M. Omara, Y. Rashid, L. Hadj-taieb, G. B. Abdelaziz, and A. E. Kabeel . 2019. Rotating-drum solar still with enhanced evaporation and condensation techniques : Comprehensive STUDY. Energy Conversion and Management 199:112024. doi:10.1016/j.enconman.2019.112024.
  • Abo-Elfadl, S., M. S. Yousef, and H. Hassan. 2021. Energy, exergy, economic and environmental assessment of using different passive condenser designs of solar distiller. Process Safety and Environmental Protection 148:302–12. doi:10.1016/j.psep.2020.10.022.
  • Abolfazli, J., N. Rahbar, and M. Lavvaf. 2011. Utilization of thermoelectric cooling in a portable active solar still — An experimental study on winter days. Desalination 269 (1–3):198–205. doi:10.1016/j.desal.2010.10.062.
  • Ajdari, H., and A. Ameri. 2022. Performance assessment of an inclined stepped solar still integrated with PCM and CuO/GO nanocomposite as a nanofluid. Journal of Building Engineering 49:104090. doi:10.1016/J.JOBE.2022.104090.
  • Aljubouri, A. A. 2017. Design and manufacturing of single sloped solar still: Study the effect of inclination angle and water depth on still performance. Journal of Al-Nahrain University-Science 20 (2):60–70. doi:10.22401/juns.20.2.08.
  • Alwan, N. T., S. E. Shcheklein, and O. M. Ali. 2021. Experimental study and economic cost analysis about enhancement productivity for a conventional solar still combined with humidifiers ultrasonic. Energy Sources, Part A Recover Util Environ Eff 00:1–17. doi:10.1080/15567036.2021.1924318.
  • Arun Kumar, S., P. Suresh Mohan Kumar, R. Sathyamurthy, and A. M. Manokar. 2020. A study of life cycle conversion efficiency and CO2 role in the pyramid shape solar stills – comparative analysis. Groundwater for Sustainable Development 11:100413. doi:10.1016/j.gsd.2020.100413.
  • Carranza, F., C. D. Villa, J. Aguilar, H. A. Borbón-Nuñez, and D. Sauceda. 2021. Experimental study on the potential of combining TiO2, ZnO, and Al2O3 nanoparticles to improve the performance of a double-slope solar still equipped with saline water preheating francisco. Desalination AND WATER Treatment 216:14–33. doi:10.5004/dwt.2021.26760.
  • Dev, R., and G. N. Tiwari. 2009. Characteristic equation of a passive solar still. Desalination 245 (1–3):246–65. doi:10.1016/j.desal.2008.07.011.
  • Dhivagar, R., M. Mohanraj, K. Hidouri, and Y. Belyayev. 2021. Energy, exergy, economic and enviro-economic (4E) analysis of gravel coarse aggregate sensible heat storage-assisted single-slope solar still. Journal of Thermal Analysis and Calorimetry 145 (2):475–94. doi:10.1007/s10973-020-09766-w.
  • Dhivagar, R., B. Deepanraj, M. Mohanraj, and A. Prakash. 2022. Thermal performance, cost effectiveness and environmental analysis of a heat pump assisted regenerative solar still using slack wax as heat storage material. Sustainable Energy Technologies and Assessments 52:102090. doi:10.1016/J.SETA.2022.102090.
  • Dumka, P., A. Sharma, Y. Kushwah, A. S. Raghav, and D. R. Mishra. 2019. Performance evaluation of single slope solar still augmented with sand-filled cotton bags. Journal of Energy Storage 25:100888. doi:10.1016/j.est.2019.100888.
  • Dwivedi, V. K., and G. N. Tiwari. 2010. Thermal modeling and carbon credit earned of a double slope passive solar still. Desalination and Water Treatment 13 (1–3):400–10. doi:10.5004/dwt.2010.856.
  • El-Sebaii, A. A., and M. El-Naggar. 2017. Year round performance and cost analysis of a finned single basin solar still. Applied Thermal Engineering, Vol. 110 January 2017 787–794 . doi:10.1016/j.applthermaleng.2016.08.215.
  • Elango, T., A. Kannan, and K. K. Murugavel. 2015. Performance study on single basin single slope solar still with different water nano fluids. Desalination 360:45–51. doi:10.1016/j.desal.2015.01.004.
  • Faizal, M., R. Saidur, S. Mekhilef, and M. A. Alim. 2013. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management 76:162–68. doi:10.1016/j.enconman.2013.07.038.
  • Jobrane, M., A. Kopmeier, A. Kahn, H.-M. Cauchie, A. Kharroubi, and C. Penny. 2021. Theoretical and experimental investigation on a novel design of wick type solar still for sustainable freshwater production. Applied Thermal Engineering 117648. doi:10.1016/j.applthermaleng.2021.117648.
  • Khalilmoghadam, P., A. Rajabi-Ghahnavieh, and M. B. Shafii. 2021. A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe. Renewable Energy 163:2115–27. doi:10.1016/j.renene.2020.10.073.
  • Nazari, S., H. Safarzadeh, and M. Bahiraei. 2019a. Experimental and analytical investigations of productivity, energy and exergy efficiency of a single slope solar still enhanced with thermoelectric channel and nanofluid. Renewable Energy 135:729–44. doi:10.1016/j.renene.2018.12.059.
  • Nazari, S., H. Safarzadeh, and M. Bahiraei. 2019b. Performance improvement of a single slope solar still by employing thermoelectric cooling channel and copper oxide nanofluid: An experimental study. Journal of Cleaner Production 208:1041–52. doi:10.1016/j.jclepro.2018.10.194.
  • Panchal, H., H. Nurdiyanto, K. K. Sadasivuni, S. S. Hishan, F. A. Essa, M. Khalid, S. Dharaskar, and S. Shanmugan. 2021. Experimental investigation on the yield of solar still using manganese oxide nanoparticles coated absorber. Case Studies in Thermal Engineering 25:100905. doi:10.1016/j.csite.2021.100905.
  • Parsa, S. M., A. Rahbar, Y. D. Javadi, M. H. Koleini, M. Afrand, and M. Amidpour. 2020. Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000m: Altitude concept. Journal of Cleaner Production 261:121243. doi:10.1016/j.jclepro.2020.121243.
  • Rashidi, S., J. Abolfazli, and N. Rahbar. 2017. Partitioning of solar still for performance recovery : Experimental and numerical investigations with cost analysis. Solar Energy 153:41–50. doi:10.1016/j.solener.2017.05.041.
  • Sahota, L., and G. N. Tiwari. 2017. Exergoeconomic and enviroeconomic analyses of hybrid double slope solar still loaded with nanofluids. Energy Conversion and Management 148:413–30. doi:10.1016/j.enconman.2017.05.068.
  • Sharon, H., and K. S. Reddy. 2015. Performance investigation and enviro-economic analysis of active vertical solar distillation units. Energy 84:794–807. doi:10.1016/j.energy.2015.03.045.
  • Sharshir, S. W., G. Peng, A. H. Elsheikh, E. M. A. Edreis, M. A. Eltawil, T. Abdelhamid, A. E. Kabeel, J. Zang, and N. Yang. 2018. Energy and exergy analysis of solar stills with micro/nano particles : A comparative study. Energy Conversion and Management 177:363–75. doi:10.1016/j.enconman.2018.09.074.
  • Shoeibi, S., N. Rahbar, A. A. Esfahlani, and H. Kargarsharifabad. 2021. Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation. Renew Energy 171:227–44. doi:10.1016/j.renene.2021.02.081.
  • Sonker, V. K., J. P. Chakraborty, and A. Sarkar. 2022. Development of a frugal solar still using phase change material and nanoparticles integrated with commercialization through a novel economic model. Journal of Energy Storage 51:104569. doi:10.1016/J.EST.2022.104569.
  • Tiwari, G. N., J. M. Thomas, and E. Khan. 1994. Optimisation of glass cover inclination for maximum yield in a solar still. Heat Recovery Systems and CHP 14 (4):447–55. doi:10.1016/0890-4332(94)90048-5.
  • United Nations, Treaty Series. 1998 Chapter XXVII: Kyoto Protocol to the United Nations Framework Convention on Climate Change Vol. 2303 (United Nations Treaty Collections). 2021. Accessed on December 20. https://unfccc.int/resource/docs/convkp/kpeng.pdf
  • Yousef, M. S., H. Hassan, and H. Sekiguchi. 2019. Energy, exergy, economic and enviroeconomic (4E) analyses of solar distillation system using di ff erent absorbing materials. Applied Thermal Engineering 150:30–41. doi:10.1016/j.applthermaleng.2019.01.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.