130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High sensitive UV photodetector based on ZnS/PS thin film prepared via spray pyrolysis method

ORCID Icon, &
Pages 5303-5313 | Received 07 Oct 2021, Accepted 24 May 2022, Published online: 19 Jun 2022

References

  • Al-Diabat, A. M., N. M. Ahmed, M. Hashim, and K. M. Chahrour. 2017. Influence of the spray distance to substrate on optical properties of chemically sprayed ZnS thin films. Journal of Materials Science: Materials in Electronics 28 (1):371–75.
  • Aljawrneh, B., A. Alsaad, B. Albiss, S. Alrousan, A. Alshanableh, and S. Mutlaq. 2022. Cellulose acetate membranes treated with titanium dioxide and cerium dioxide nanoparticles and their nanocomposites for enhanced photocatalytic degradation activity of methylene blue. Journal of Materials Science: Materials in Electronics 31: 1–14.
  • Bae, W. K., J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee. 2009. Highly efficient green‐light‐emitting diodes based on CdSe@ ZnS quantum dots with a chemical‐composition gradient. Advanced Materials 21 (17):1690–94. doi:10.1002/adma.200801908.
  • Bandić, Z., E. Piquette, J. O. McCaldin, and T. McGill. 1998. Solid phase recrystallization of ZnS thin films on sapphire. Applied Physics Letters 72 (22):2862–64. doi:10.1063/1.121483.
  • Borse, P., N. Deshmukh, R. Shinde, S. Date, and S. K. Kulkarni. 1999. Luminescence quenching in ZnS nanoparticles due to Fe and Ni doping. Journal of Materials Science 34 (24):6087–93. doi:10.1023/A:1004709601889.
  • Bosco, J., F. Tajdar, and H. Atwater. 2012. Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices. In 2012 38th IEEE Photovoltaic Specialists Conference, Austin. IEEE.
  • Canham, L. 2020. Introductory lecture: Origins and applications of efficient visible photoluminescence from silicon-based nanostructures. Faraday Discussions 222:10–81. doi:10.1039/d0fd00018c.
  • Fang, X., Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, and Y. Koide. 2009. Single‐crystalline ZnS nanobelts as ultraviolet‐light sensors. Advanced Materials 21 (20):2034–39. doi:10.1002/adma.200802441.
  • Gokarna, A., N. Pavaskar, S. Sathaye, V. Ganesan, and S. Bhoraskar. 2002. Electroluminescence from heterojunctions of nanocrystalline CdS and ZnS with porous silicon. Journal of Applied Physics 92 (4):2118–24. doi:10.1063/1.1483381.
  • González-Chan, I., A. Pat-Herrera, A. Trejo-Ramos, and A. Oliva. 2021. Synthesis and characterisation of ZnS thin films obtained without complexing agent by the chemical bath technique. Surface Engineering 37 (9):1120–32. doi:10.1080/02670844.2021.1926828.
  • Hu, L., J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, and X. Fang. 2012. An optimized ultraviolet – A light photodetector with wide‐range photoresponse based on ZnS/ZnO biaxial nanobelt. Advanced Materials 24 (17):2305–09. doi:10.1002/adma.201200512.
  • Huang, X., Y.-Q. Yu, J. Xia, H. Fan, L. Wang, M.-G. Willinger, X.-P. Yang, Y. Jiang, T.-R. Zhang, and X.-M. Meng. 2015. Ultraviolet photodetectors with high photosensitivity based on type-II ZnS/SnO 2 core/shell heterostructured ribbons. Nanoscale 7 (12):5311–19. doi:10.1039/C5NR00150A.
  • Jiang, P., J. Jie, Y. Yu, Z. Wang, C. Xie, X. Zhang, C. Wu, L. Wang, Z. Zhu, and L. Luo. 2012. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors. Journal of Materials Chemistry 22 (14):6856–61. doi:10.1039/c2jm15365c.
  • Lu, H.-Y., S.-Y. Chu, and -S.-S. Tan. 2004. The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles. Journal of Crystal Growth 269 (2–4):385–91. doi:10.1016/j.jcrysgro.2004.05.050.
  • McCamy, J., D. H. Lowndes, J. Budai, R. Zuhr, and X. Zhang. 1993. Epitaxial ZnS films grown on GaAs (001) and (111) by pulsed‐laser ablation. Journal of Applied Physics 73 (11):7818–22. doi:10.1063/1.353956.
  • Moretta, R., L. De Stefano, M. Terracciano, and I. Rea. 2021. Porous silicon optical devices: Recent advances in biosensing applications. Sensors 21 (4):1336. doi:10.3390/s21041336.
  • Peng, Q., J. Jie, C. Xie, L. Wang, X. Zhang, D. Wu, Y. Yu, C. Wu, Z. Wang, and P. Jiang. 2011. Nano-Schottky barrier diodes based on Sb-doped ZnS nanoribbons with controlled p-type conductivity. Applied Physics Letters 98 (12):123117. doi:10.1063/1.3569590.
  • RoyChaudhuri, C. 2015. A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor. Sensors and Actuators B: Chemical 210:310–23. doi:10.1016/j.snb.2014.12.089.
  • Song, S., H. Shim, S. K. Lim, and S. M. Jeong. 2018. Patternable and widely colour-tunable elastomer-based electroluminescent devices. Scientific Reports 8 (1):1–10. doi:10.1038/s41598-017-17765-5.
  • Torres-Costa, V., and R. Martín-Palma. 2010. Application of nanostructured porous silicon in the field of optics. A review. Journal of Materials Science 45 (11):2823–38. doi:10.1007/s10853-010-4251-8.
  • Tsuruoka, T., C. Liang, K. Terabe, and T. Hasegawa. 2008. Origin of green emission from ZnS nanobelts as revealed by scanning near-field optical microscopy. Applied Physics Letters 92 (9):091908. doi:10.1063/1.2890715.
  • Vishwakarma, R. 2015. Effect of substrate temperature on ZnS films prepared by thermal evaporation technique. Journal of Theoretical and Applied Physics 9 (3):185–92. doi:10.1007/s40094-015-0177-5.
  • Wang, C.-F., B. Hu, H.-H. Yi, and W.-B. Li. 2011. Structure and photoluminescence properties of ZnS films grown on porous Si substrates. Optics & Laser Technology 43 (8):1453–57. doi:10.1016/j.optlastec.2011.04.018.
  • Wang, X., Z. Xie, H. Huang, Z. Liu, D. Chen, and G. Shen. 2012. Gas sensors, thermistor and photodetector based on ZnS nanowires. Journal of Materials Chemistry 22 (14):6845–50. doi:10.1039/c2jm16523f.
  • Wang, M.-Z., W.-J. Xie, H. Hu, Y.-Q. Yu, C.-Y. Wu, L. Wang, and L.-B. Luo. 2013. p-type ZnS: N nanowires: Low-temperature solvothermal doping and optoelectronic properties. Applied Physics Letters 103 (21):213111. doi:10.1063/1.4833275.
  • Wang, C.-F., B. Hu, W.-B. Li, and H.-H. Yi. 2014. Luminescence properties of ZnS/porous Si composites. Optik 125 (1):554–56. doi:10.1016/j.ijleo.2013.07.027.
  • Wang, L., X. Ma, R. Chen, Y.-Q. Yu, and L.-B. Luo. 2015. Ultraviolet nano-photodetector based on ZnS: Cl nanoribbon/Au Schottky junctions. Journal of Materials Science: Materials in Electronics 26 (6):4290–97.
  • Xu, L., K. W. Cheah, H. L. Tam, K. F. Li, Y. Zhang, Y. Ma, X. Huang, and K. Chen. 2002. Synthesis of nano-ZnS modified porous Si with white light photoluminescence properties. Japanese Journal of Applied Physics 41 (7R):4466. doi:10.1143/JJAP.41.4466.
  • Yang, K., B. Li, and G. Zeng. 2019. Effects of temperature on properties of ZnS thin films deposited by pulsed laser deposition. Superlattices and Microstructures 130:409–15. doi:10.1016/j.spmi.2019.05.009.
  • Yoon, Y.-G., and I.-H. Choi. 2013. Preparation of ZnS thin films by using photoassisted MOCVD. Journal of the Korean Physical Society 63 (8):1609–14. doi:10.3938/jkps.63.1609.
  • Zaware, R. V., and B. G. Wagh. 2014. Effect of substrate temperature and precursor ratio on properties of thin ZnS films sprayed by improved method. Materials Science-Poland 32 (3):375–84. doi:10.2478/s13536-014-0224-y.
  • Zeng, X., S. S. Pramana, S. K. Batabyal, S. G. Mhaisalkar, X. Chen, and K. Jinesh. 2013. Low temperature synthesis of wurtzite zinc sulfide (ZnS) thin films by chemical spray pyrolysis. Physical Chemistry Chemical Physics 15 (18):6763–68. doi:10.1039/c3cp43470b.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.