575
Views
5
CrossRef citations to date
0
Altmetric
Review

Effect of biomass co-digestion and application of artificial intelligence in biogas production: A review

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 5314-5339 | Received 18 Jan 2022, Accepted 26 May 2022, Published online: 19 Jun 2022

References

  • Abdallah, M., L. Fernandes, and M. A. Warith (2017) Modeling of biogas generation in bioreactor landfills using neuro-fuzzy system Proceedings of the IASTED International Conference on Modelling, Simulation and Optimatization Held at: Quebec, Canada
  • Abdul, S. F., N. S. Md, and M. Norwati. 2017. Modelling of biogas production from banana stem waste with neural networks learning strategies to optimise the production. Journal of Theoretical and Applied Information Technology 95 (2):15–31.
  • Aboudi, K., C. J. Álvarez-Gallego, and L. I. Romero-García. 2016. Evaluation of methane generation and process stability from anaerobic codigestion of sugar beet byproduct and cow manure. Journal of Bioscience and Bioengineering 121:566–72.
  • Adegun, I. K., and S. S. Yaru. 2013. Cattle dung biogas as a renewable energy source for rural laboratories. Journal of Sustainable Technology 4 (1):1–8.
  • Aigbodion, A. I., I. O. Bakare, E. A. Fagbemi, E. O. Abolagba, B. Omonigho, P. O. Ayeke, M. Bausa, and E. Musa. 2018. Viability of biogas production from manure/biomass in Nigeria using fixed dome digester. Universal Journal of Agricultural Research 6 (1):1–8. doi:10.13189/ujar.2018.060101.
  • Aisien, F. A., and E. T. Aisien. 2020. Biogas from cassava peels waste. Detritus Multidisciplinary Journal of Waste Resources and Residues / 10:100–08. doi:10.31025/2611-4135/2020.13910.
  • Akinbami, J. F. K., M. O. Ilori, T. O. Oyebisi, I. O. Oyebisi, and O. Adeoti. 2001. Biogas energy use in Nigeria: Current status, future prospects and policy implications. Renewable and Sustainable Energy Reviews 5 (1):97–112. doi:10.1016/S1364-0321(00)00005-8.
  • Al Imam, M. F. I., M. Z. H. Khan, M. A. R. Sarkar, and S. M. Ali. 2013. Development of biogas processing from cow dung, poultry waste, and water hyacinth. International Journal of Natural and Applied Science 2:3–17.
  • Ali, M. M., M. Ndongo, B. Bilal, K. Yetilmezsoy, I. Youm, and M. Bahramian. 2020. Mapping of biogas production potential from livestock manures and slaughterhouse waste: A case study for African countries. Elsevier Journal of Cleaner Production 256:120499. doi:10.1016/j.jclepro.2020.120499.
  • Alkhamis, T. M., A. I. Alzoubi, and B. M. Alma’atah. 2021. Biogas production from sheep manure by a simulated underground burial system heated with cascade-controlled solar water heated system, as an indicator of biomass potential contribution to power mix in Jordan. Journal of Environmental Protection 12 (2):125–40. doi:10.4236/jep.2021.122009.
  • Altunay, P., A. Sever, S. C. Serdar, and T. Abdurrahman. 2008. Prediction of effluent quality of an anaerobic treatment plant under unsteady state through anfis modeling with on-line input variables. Chemical Engineering Journal 145 (1):78–85. doi:10.1016/j.cej.2008.03.008.
  • Alvarez, R., Lide, and G. Lidén. 2009. Low-Temperature anaerobic digestion of mixtures of llama, cow and sheep manure for improved methane production. Elsevier Journal of Biomass and Bioenergy 33 (3):527–33. doi:10.1016/j.biombioe.2008.08.012.
  • Amare, Z. Y. 2015. The benefits of the use of biogas energy in rural areas in Ethiopia: a case study from the Amhara National Regional State, Fogera District. African Journal of Environmental Science and Technology 9 (4):332–45. doi:10.5897/AJEST2014.1838.
  • Amekan, Y. 2020. The influence of microbial community dynamics on anaerobic digestion efficiency and stability: a review. International Journal of Renewable Energy Development 9 (1):85–95. doi:10.14710/ijred.9.1.85-95.
  • Amigun, R. S., H. von Blottnitz, and H. von Blottnitz. 2008. Commercialization of biofuel industry in Africa: A review. Renewable and Sustainable Energy Reviews 12 (3):690–711. doi:10.1016/j.rser.2006.10.019.
  • Amigun, B., W. Parawira, J. K. Musango, A. O. Aboyade, and A. S. Badmos (2012) Anaerobic biogas generation for rural area energy provision in Africa, Book Chapter accessed on internet https://www.researchgate.net/publication/221928128_Anaerobic_Biogas_Generation_for_Rural_Area_Energy_Provision_in_Africa August 5.
  • Amirta, R., E. Herawatib, W. Suwinartia, and T. Watanabed (2016) Two-Steps Utilization of Shorea Wood Waste Biomass for the Production of Oyster Mushroom and Biogas – A zero waste approach International Conference on Food, Agriculture and Natural Resources, IC-FANRes 2015 Agriculture and Agricultural Science Procedia 9; 202–08
  • Annuputtikul, W., and S. Rodtong (2004) Laboratory scale experiments for biogas production from cassava tubers, The Joint International Conference on “Sustainable Energy and Environment (SEE),” Hua Hinm Thailand, December1–3.
  • Anthony, M. M., and P. C. Wilson. 2009. Biogas technology research in selected sub-Saharan African countries – A review. African Journal of Biotechnology 8 (2):116–25.
  • Antwi, P., J. Li, P. O. Boadi, and J. Meng 2017. Efficiency of an upflow anaerobic sludge blanket reactor treating potato starch processing wastewater and related process kinetics, functional microbial community and sludge morphology Bioresource Technology 239pp. 103–14. doi: 10.1016/j.biortech.2017.04.124.
  • Arthur, R., M. F. Baidoo, and E. Antwi. 2010. Biogas as a potential renewable energy source: A Ghanaian case study Elsevier. Renewable Energy 13: 1–7.
  • Asante-Sackey, D., E. K. Tetteh, N. Nkosi, G. O. Baokye, K. O. Ansah Amano, B. B. Boamah, and E. K. Armah. 2018. Effects of inoculum to feedstock ratio in anaerobic digestion for biogas production. International Journal of Hydrology 2 (5):567–71.
  • Budiyeno, S. J., I. N. Widiasa, and Sunarso. 2010. Kinetics of biogas production rate from cattle manure in batch made. International Journal of Chemical and Biological Engineering 3 (1):39–44.
  • Bui, V. A., T. Bui, T. M, H. C. Ong, S. Nizetic, V. H. Bui, T. T. X. Nguyen, A. E. Atabani, L. Stepanec, L. H. P. Pham, et al. 2022. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy 252:1–16, 124052. doi:10.1016/j.energy.2022.124052.
  • Caputo, A. C., M. Palumbo, P. M. Pelagagge, and F. Scacchia. 2005. Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass & Bioenergy 28 (1):35–51. doi:10.1016/j.biombioe.2004.04.009.
  • Che-Ithnin, N. H., and H. Hashim. 2019. Predictive modelling for biogas generation from palm oil mill effluent (pome). Chemical Engineering Transactions 72:313–18. doi:10.3303/CET1972053.
  • Cu, T. T. T., T. X. Nguyen, J. M. Triolo, L. Pedersen, V. D. Le, P. D. Le, and S. G. Sommer. 2015. Biogas Production from Vietnamese Animal Manure. Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield Asian-Australas Journal of Animal Science 28 (2):280–89. doi:10.5713/ajas.14.0312.
  • Cu, T. T. T., T. X. Nguyen, J. M. Triolo, L. Pedersen, V. D. Le, P. D. Le, and S. G. Sommer. 2015. Biogas Production from Vietnamese Animal Manure. Plant Residues and Organic Waste: Influence of Biomass Composition on Methane Yield Asian-Australas Journal of Animal Science 28 (2):280–289. doi:10.5713/ajas.14.0312.
  • Dahunsi, S. O., C. O. Osueke, T. M. A. Olayanju, and A. I. Lawal. 2019. Co-Digestion of Theobroma cacao (Cocoa) pod husk and poultry manure for energy generation: Effects of pretreatment methods. Biores. Technol 283:229–41.
  • Das, N. K., J. Chakrabartty, M. Dey, A. K. Sen-Gupta, and M. A. Matin (2021) Present energy scenario and future energy mix of Bangladesh, Energy Strategy Reviews 54;166 – 177. (Accessed online on July 26, 2021).
  • Debabrata, B., and S. Murugan. 2012. Production and application of biogas as a gaseous fuel for internal combustion engines. International Journal of Engineering Research & Technology (IJERT) 1 (7):432–49.
  • Demirbas, and A. Demirbas. 2006. Biogas potential of manure and straw mixtures. Energy Sources, Part A 28 (1):71–78. doi:10.1080/009083190889672.
  • Dinneya-Onuoha, E., and K. B. Oyoh. 2021. Production, kinetics and purification of biogas from cow-dung and cassava peels. International Journal of Electrical and Power Engineering 15 (1):1–10.
  • Diyoke, C. 2020. Comparative thermo-economic and advanced exergy performance assessment of wind energy for distributed generation in four sites in Nigeria. International Journal of Renewable Energy Development 9 (3):339–51. doi:10.14710/ijred.9.3.339-351.
  • Elijah, T. I., A. M. Ibifuro, and S. M. Yahaya. 2009. The study of cow dung as co-substrate with rice husk in biogas production. Scientific Research and Essay 4 (9):861–66.
  • Epelle, E. I., K. S. Desongu, W. Obande, A. A. Adeleke, P. P. Ikubanni, J. A. Okolie, and B. Gunes. 2022. A comprehensive review of hydrogen production and storage: A focus on the role of nanomaterials. International Journal of Hydrogen Energy 1–34. doi:10.1016/j.ijhydene.2022.04.227.
  • Erdirencelebi, D., and S. Yalpir. 2011. Adaptive network fuzzy inference system modeling for the input selection and prediction of anaerobic digestion effluent quality. Applied Mathematical Modelling 35 (8):3821–32. doi:10.1016/j.apm.2011.02.015.
  • Erdogdu, E. 2008. An expose of bioenergy and its potential and utilization in Turkey. Energy Policy 36 (6):2182–90. doi:10.1016/j.enpol.2008.02.041.
  • Eterigho, E. J., M. Musa, A. Ejejigbe, E. Silver, and T. S. Farrow (2021) Biogas production from rumen, municipal waste and co-digested substrates: an opportunity for small and medium scale entrepreneurs (SME) member, IAENG Proceedings of the World Congress on Engineering 2021 WCE, July 7-9, 2021, London, U.K. 1–4
  • Fabiano, S. O., F. Estevão, Q. Giovane, J. Maria, and O. C. Guimarães. 2019. Comparative analysis of biogas production using artificial neural networks (ANNs) and classical methodologies. American Journal of Engineering Research (AJER) 8 (4):144–53.
  • Fajobi, M. O., O. A. Lasode, A. A. Adeleke, P. P. Ikubanni, and A. O. Balogun 2022. Investigation of physicochemical characteristics of selected lignocellulose biomass Scientific Reports. 12:2918.
  • Fakharudin, A. S., M. Sulaiman, and N. Mustapha. 2017. Modelling of biogas production from banana stem waste with neural networks learning strategies to optimise the production. Journal of Theoretical and Applied Information Technology 95 (2):285–91.
  • Francis, N. M., M. Joan, and O. Anthony (2015) Biogas Production for Domestic Use, A flexible learning Guide by the Commonwealth of Learning. Accessed on: 21st Jan. 2019.
  • Gashaw, A., A. Teshita, T. P. Sheahan, C. M. Rice, and S. N. Bhatia. 2014. Co-digestion of Ethiopian food waste with cow dung for biogas production international journal of research (IJR). Annual Review of Virology 1 (7):475–500. doi:10.1146/annurev-virology-031413-085437.
  • Ghiasi, M. M., M. Arabloo, A. H. Mohammadi, and T. Barghi. 2016. Application of ANFIS soft computing technique in modeling the CO2 capture with MEA, DEA, and TEA aqueous solutions. International Journal of Greenhouse and Gas Control 49:47–54. doi:10.1016/j.ijggc.2016.02.015.
  • Gielena, D., F. Boshella, D. Sayginb, M. D. Bazilianc, N. Wagnera, and R. Gorini. 2019. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24:38–50. doi:10.1016/j.esr.2019.01.006.
  • Goberna, M., M. A. Schoen, D. Sperl, B. Wett, and H. Insam. 2010. Mesophilic and thermophilic co-fermentation of cattle excreta and olive mill wastes in pilot anaerobic digesters. Journal of Biomass and Bioenergy 34 (3):340–46. doi:10.1016/j.biombioe.2009.11.005.
  • Gopinathan, C., and A. T. Vivek. 2016. Process optimization for enhanced biogas production from mango pulp waste. International Journal of Science and Research (IJSR) 5(5) :89–91.
  • Hoang, A. T., P. S. Varbanov, S. Nizetic, R. Sirohi, A. Pandey, R. Luque, K. H. Ng, and V. V. Pham. 2022. Perspective review on municipal solid waste-to-energy route: characteristics, management strategy, and role in circular economy. Journal of Cleaner Production 359:1–29 131897.
  • Hossain, N., M. H. Hasan, T. M. I. Mahlia, A. H. Shamsuddin, and A. S. Silitonga. 2020. Feasibility of microalgae as a feedstock for alternative fuel in Malaysia: A review. Energy Strategy Reviews 32:100536. doi:10.1016/j.esr.2020.100536.
  • Hussaina, H. 2002. Refining of bio-gas produce from biomass (cow-dung) by removing H2S and CO2, 17–20 and 41–43. PGD project. Minna, Nigeria: Federal Univ. of Technology.
  • Ilori, O. M., A. S. Adebusoye, A. K. Lawal, and A. O. Awotiwon. 2007. Production of biogas from banana and plantain peels. Advance Environmental Biological Journal 1 (1):33–38.
  • Indraj, S. (2012) Use of biogas for cooking purpose in a technical institute: A view point, Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, YMCA University of Science & Technology, Faridabad, Haryana, Oct 19 – 20.
  • Iniyan, S., and T. R. Jagadeesan. 1997. A comparative study of critical factors influencing the renewable energy systems use in the Indian context. Renewable Energy 3 (3):299–317. doi:10.1016/S0960-1481(97)00006-2.
  • Jan, P. L., M. Koen, S. Natasa, and E. Berien. 2016. Optimal use of biogas from waste streams. An Assessment of the Potential of Biogas from Digestion in the EU beyond 2020 137–146.
  • Jaroenpoj, S., Q. J. Yu, and J. Ness. 2014. Development of artificial neural network models for biogas production from co-digestion of leachate and pineapple peel. The Global Environmental Engineers 1 (2):42–47. doi:10.15377/2410-3624.2014.01.02.2.
  • Jingura, R. M., and R. Matengaifa. 2008. The potential for energy production from crop residues in Zimbabwe. Biomass & Bioenergy 32 (12):1287–92. doi:10.1016/j.biombioe.2008.03.007.
  • Kamal, N. A., S. N. Osman, L. D. Yeol, and M. Ab Wahid. 2021. Analysis of biogas production from biomass residue of palm oil mills using an anaerobic batch test. Sains Malaysiana 50 (12):3583–92. doi:10.17576/jsm-2021-5012-10.
  • Kana, E. B. G., J. K. Oloke, A. Lateef, and M. O. Adesiyan. 2012. Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Journal of Renewable Energy 46:276–81. doi:10.1016/j.renene.2012.03.027.
  • Kargwal, R., Y. Gupta, M. K. Garg, and K. Malik. 2019. Effect of Different Concentration of Paddy Straw and Cattle Dung on. Biogas Production International Journal of Current Microbiology and Applied Sciences 8 (7):537–44. doi:10.20546/ijcmas.2019.807.066.
  • Kayaa, I., M. Çolakb, and F. Terzia. 2019. A comprehensive review of fuzzy multi-criteria decision-making methodologies for energy policy-making. Energy Strategy Reviews 24:207–28. doi:10.1016/j.esr.2019.03.003.
  • Keshavarzi, A., F. Sarmadian, J. Shiri, M. Iqbal, R. Tirado-Corbalá, and E. S. E. Omran. 2017. Application of ANFIS-Based subtractive clustering algorithm in soil cation exchange capacity estimation using soil and remotely sensed data. The Measurements 95:173–80.
  • Kiely, G., G. Tayfur, C. Dolan, and K. Tanjf. 1997. Physical and mathematical modelling of anaerobic digestion of organic wastes. Water Resources 31 (3):534–40.
  • Kobra, S., M. K. Seyed, S. H. Fatemeh, and K. M. Farnoush. 2014. Laboratory biogas production from kitchen wastes and applying an adaptive neuro-fuzzy inference system as a prediction model. International Journal of Environmental Science and Development 5 (3):16–29.
  • Kusiak, A., and X. Wei. 2014. Prediction of methane production in wastewater treatment facility: a data-mining approach. ANN Operational Resources 216 (1):71–81. doi:10.1007/s10479-011-1037-6.
  • Lantz, M., S. Mattias, L. Björnsson, and L. Börjesson. 2007. The prospects for an expansion of biogas systems in Sweden - Incentives, barriers and potentials. Energy Policy 35 (3):1830–43. doi:10.1016/j.enpol.2006.05.017.
  • Levstek, T., and M. Lakota. 2010. The use of artificial neural networks for compounds prediction in biogas from anaerobic digestion – A review. Agricultural Publication 7:15–22.
  • Li, R., S. Chen, X. Li, and J. S. Lar. 2009. Anaerobic Codigestion of Kitchen Waste with Cattle Manure for. Biogas Production Energy & Fuels 23 (4):178–89. doi:10.1021/ef8008772.
  • Maconachie, R., A. Tanko, and M. Zakariya. 2009. Descending the energy ladder? Oil price shocks and domestic manure and other biomass materials. Biomass & Bioenergy 9:303–14.
  • Madu, K., and P. I. Onwuamaeze. 2018. Evaluation of Sawdust Concentration on Biogas Production from Sawdust Waste, Cow Dung and Water Hyacinth. Journal of Industrial Technology 3 (1):41–46.
  • Mahjabeen, S. Z. A., S. Shah, B. Chughtai, Simonetti, and B. Simonetti. 2020. Renewable energy, institutional stability, environment and economic growth nexus of D-8 countries. Energy Strategy Reviews 29:100484. doi:10.1016/j.esr.2020.100484.
  • Makinde, O. A., and L. O. Odokuma. 2015. Comparative study of the biogas potential of plantain and yam peels. Brit. J. Appl. Sci. Technol 9:354–59.
  • Maleki, A., A. Haghighi, and I. Mahariq. 2021. Machine learning-based approaches for modelling thermophysical properties of hybrid nanofluids: A comprehensive review. Journal of Molecular Liquids 322:114843. doi:10.1016/j.molliq.2020.114843.
  • Manjappa, K. 2014. Use of Eupatorium (Chromolaena odorata L.) in biogas production. International Journal of Scientific and Engineering Research 5 (11):1–9.
  • Maria, B. (2006) Biogas Production from a System Analytical Perspective, A Published PhD. Dissertation of the Technology and Society Department, Faculty of Engineering at Lund University, Lund Sweden.
  • Mazo, C. M. G., Y. Olaya, and S. B. Botero. 2020. Investment in renewable energy considering game theory and wind-hydro diversification. Energy Strategy Reviews 28:100447. doi:10.1016/j.esr.2020.100447.
  • Mbuligwe, S. E., and G. R. Kassenga. 2004. Feasibility and strategies for anaerobic digestion of solid waste for energy production in DaresSalaam city, Tanzania. Resources Conservation and Recycling 42 (2):183–203. doi:10.1016/j.resconrec.2004.02.010.
  • Mostafaei, M., H. Javadikia, and L. Naderloo. 2016. Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). Energy Study 115:626–36. doi:10.1016/j.energy.2016.09.028.
  • Murulidhar, K. S., and P. B. G. Putta. 2017. Design and fabrication of biogas digester for anaerobic dry fermentation under thermophilic condition. Global Journal of Engineering Science and Researches 12: 133–44.
  • Nair, V. V., H. Dhar, S. Kumar, A. K. Thalla, S. Mukherjee, and J. W. C. Wong. 2016. Artificial neural network-based modelling to evaluate methane yield from biogas in a laboratory-scale anaerobic bioreactor. Bioresource Technology 217:90–99. doi:10.1016/j.biortech.2016.03.046.
  • Najafi, B., and S. F. Ardabili. 2018. Application of ANFIS, ANN and logistic methods in estimating biogas production from spent mushroom compost (SMC. Resources, Conservation & Recycling 133:169–78. doi:10.1016/j.resconrec.2018.02.025.
  • Nayak, S. K., A. T. Hoang, S. Nizetic, X. P. Nguyen, and T. H. Le. 2022. Effects of advanced injection timing and inducted gaseous fuel on performance, combustion and emission characteristics of a diesel engine operated in dual-fuel mode. Fuel 310:1–16 122232. doi:10.1016/j.fuel.2021.122232.
  • Nuhu, S. K., J. A. Gyang, J. J. Kwarbak, and F. P. Joel. 2018. The synthesis of methane from chicken droppings using locally constructed digester and scrubber. Continental Journal of Engineering Sciences 13 (1):1–15.
  • Nwokolo, N., P. Mukumba, K. Obileke, and M. Enebe. 2020. Waste to energy: a focus on the impact of substrate type in biogas production. Processes 8 (10):1224. doi:10.3390/pr8101224.
  • Ogunkunle, O., K. O. Olatunji, and J. O. Amos. 2018. Comparative Analysis of Co-Digestion of Cow Dung and Jatropha Cake at Ambient Temperature. Journal of Fundamentals of Renewable Energy and Applications 8 (5):23–35. doi:10.4172/2090-4541.1000271.
  • Oke, E. O., O. Adeyi, A. J. Adeyi, and K. F. Adekunle. 2018. Modelling of grewia mollis stem bark gum extraction yield using neuro-fuzzy technique. International Journal of Engineering Research in Africa 34:70–80. www.scientific.net/JERA.34.70.
  • Okuo, D. O., M. A. Waheed, and B. O. Bolaji. 2016. Evaluation of biogas yield of selected ratios of cattle, swine, and poultry wastes. International Journal of Green Energy 13 (4):366–72. doi:10.1080/15435075.2014.961460.
  • Olaniyan, A. M., T. T. Olawale, K. P. Alabi, A. E. Adeleke, and S. K. Oyeniyi. 2017. Design, construction and testing of a biogas reactor for production of biogas using cassava peel and cow dung as biomass. Arid Zone Journal of Engineering, Technology and Environment 13 (4):478–88.
  • Olojede, M. A., O. Ogunkunle, and N. A. Ahmed. 2018. Quality of optimized biogas yields from co-digestion of cattle dung with fresh mass of sunflower leaves, pawpaw and potato peels. Cogent Engineering 5 (1):1–21. doi:10.1080/23311916.2018.1538491.
  • Olorunmaiye, J. A., I. K. Adegun, O. J. Ogunniyi, J. O. Aweda, T. K. Ajiboye, and S. Abdulkareem (2016) Effects of mixing ratios of cow dung, Cassava Peel and Rice Husk On Thermodynamic Properties of Biogas In Anaerobic Digester Proceedings of the iSTEAMS Multidisciplinary Cross-Border Conference University of Professional Studies Accra Ghana
  • Olugbemide, A. D., A. O. Imasuen, P. O. Oleghe, and J. O. Efosa. 2012. Anaerobic co-digestion of fresh maize leaves with elephant grass. Journal of Applied Science and Environmental Management 16 (1):133–35.
  • Ononogbo, C., O. C. Nwufo, C. F. Nwaiwu, and J. O. Igbokwe. 2015. An innovative approach to construction and operation of biodigesters: a consideration of floating drum biogas plant. TLEP International Journal of Mechanical Engineering Research 1:1–13.
  • Ononogbo, C., O. C. Nwufo, G. Nwaji, N. Okoronkwo, A. C, and J. O. Igbokwe. 2016. Effective mixing, parametric and operational consideration in the construction of a floating drum biogas plant. International Journal for Research in Mechanical & Civil Engineering 2 (2):1–10.
  • Oparaku, N. F., A. C. Ofomatah, and E. C. Okoroigwe. 2013. Biodigestion of cassava peels blended with pig dung for methane generation. African Journal of Pig Farming 1 (2):23–27.
  • Ortega, A., K. Gkoumas, A. Tsakalids, and F. Pekar. 2021. Low-Emission alternative energy for transport in the EU: state of play of research and innovation. Energies 14 (22):7764. doi:10.3390/en14227764.
  • Ousman, R., S. K. Dibaba, S. T. Lahiri, and D. Abhishek. 2016. Experimental and artificial neural network modelling of an up-flow anaerobic contactor (UAC) for biogas production from vinasse. International Journal of Chemical Reactor Engineering 14 (6):1241–54. doi:10.1515/ijcre-2016-0025.
  • Oyelaran, O. A., A. E. Adeleke, O. M. Sanusi, B. J. Olorunfemi, and Y. Y. Tudunwada. 2018. Bioconversion of mixed fruit waste as a potential source of. Biogas and Organic Fertilizer International Journal of Integrated Engineering 10 (8):153–59.
  • Ozkaya, B., A. Demir, and B. M. Sinan. 2007. Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environmental Modelling Software 22 (6):815–22. doi:10.1016/j.envsoft.2006.03.004.
  • Pahlavan, R., M. Omid, and A. Akram. 2012. Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37 (1):171–76. doi:10.1016/j.energy.2011.11.055.
  • Palacio, J. C. E., J. J. C. S. Santos, M. L. G. Reno, J. C. F. Júnior, M. Carvalho, A. M. M. Reyes, and D. J. R. Orozco. 2019. Municipal solid waste management and energy recovery. In Energy Conversion–Current Technologies and Future Trends. InTech Open, ed. I. H. Al-Bahadly, 127–46. doi:10.5772/intechopen.79235.
  • Petersson, A., M. H. Thomsen, H. Hauggaard-Nielsen, and A. Thomsen. 2007. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass & Bioenergy 31 (11–12):812–19. doi:10.1016/j.biombioe.2007.06.001.
  • Polit, M., M. Estaben, and P. Labat. 2002. A fuzzy model for an anaerobic digester, comparison with experimental results. Engineering Applied Art Intel 15 (5):385–90. doi:10.1016/S0952-1976(02)00091-X.
  • Potic, I., T. Joksimovic, U. Milincic, D. Kicovic, and M. Milincic. 2021. Wind energy potential for the electricity production - knjazevac municipality case study (Serbia. Energy Strategy Reviews 33:100589. doi:10.1016/j.esr.2020.100589.
  • PRB, (2018) Population reference bureau, world population clock, Assessed from 10th August 2018 www.worldometers.info. through the Google Search Engine on Friday
  • Qdais, H. A., K. B. Hani, and K. Shatnawi. 2010. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resources Conservation and Recycling 54 (6):359–63. doi:10.1016/j.resconrec.2009.08.012.
  • Rao, S., S. Singh, A. Singh, and M. Sodha. 2000. Bioenergy conversion studies of the organic fraction of MSW. Assessment of Ultimate Bioenergy Production Potential of Municipal Garbage. Appl. Energy 66 (1):11–18.
  • Rashama, C., G. Ijoma, and T. Matambo. 2019. Biogas generation from by-products of edible oil processing: a review of opportunities, challenges and strategies. Springer Biomass Conversion and Biorefinery Journal 9 (4):803–26. doi:10.1007/s13399-019-00385-6.
  • Robra, S., R. S. da Cruz, A. M. de Oliveira, J. A. Neto, and J. V. Santos. 2010. Generation of biogas using crude glycerine from biodiesel production as a supplement to cattle slurry. Elsevier Journal of Biomass and Bioenergy 34 (9):1330–35. doi:10.1016/j.biombioe.2010.04.021.
  • Rohjy, H. A., J. J. Aduba, I. H. Manta, and Y. Pamdaya. 2013. Development of anaerobic digester for the production of biogas using poultry and cattle dung: a case study of federal university of technology minna cattle & poultry pen. International Journal of Life Sciences 2 (3):139–49.
  • Rufai, I. A. 2010. A Review of the Evolution And Development of Anaerobic Digestion Technology. Journal of Engineering and Technology (JET) 5 (1):100–11.
  • Sabitha, S. G., P. Rupashire, and P. Mathu. 2022. Prognosis of biogas production from sewage treatment plant using machine learning. International Research Journal of Engineering and Technology (IRJET) 09 (1):1560–64.
  • Said, Z., P. Sharma, L. S. Sundar, A. Afzal, and C. Li. 2021. Synthesis, stability, thermophysical properties and AI approach for predictive modelling of Fe3O4 coated MWCNT hybrid nanofluids. Journal of Molecular Liquids 340:117291. doi:10.1016/j.molliq.2021.117291.
  • Said, Z., N. K. Cakmak, P. Sharma, L. S. Sundar, A. Inayata, O. Keklikcioglu, and C. Li. 2022. Synthesis, stability, density, viscosity of ethylene glycol-based ternary hybrid nanofluids: Experimental investigations and model -prediction using modern machine learning techniques. Powder Technology 400:117190. doi:10.1016/j.powtec.2022.117190.
  • Sakhawat, A., Z. Naseem, N. Zahida, and U. Shumaila. 2013. Impact of biogas technology in the development of rural population. Pakistan Journal of Analytical Environmental Chemic 14 (2):65–74.
  • Salehi, K., M. Khazraee, F. S. Hoseini, and F. K. Mostafazadeh. 2014. Laboratory Biogas Production from Kitchen Wastes and Applying an Adaptive Neuro Fuzzy Inference System as a Prediction Model Laboratory Biogas Production from Kitchen Wastes and Applying an Adaptive Neuro Fuzzy Inference System as a Prediction Model. International Journal of Environmental Science and Development 5 (3):290–93. doi:10.7763/IJESD.2014.V5.494.
  • Sambo, A. S., A. C. Etonihu, and A. M. Mohammed. 2015. Biogas production from co-digestion of selected agricultural wastes in Nigeria. International Journal of Research – Granthaalayah 3 (11):1–9. doi:10.29121/granthaalayah.v3.i11.2015.2909.
  • Sandriaty, R., C. Priadi, S. Kurnianingsih, and A. Abdillah. 2018. Potential of biogas production from anaerobic co-digestion of fat. Oil and Grease Waste and Food wasteE3s Web of Conferences 67 (8):02047. doi:10.1051/e3sconf/20186702047.
  • Shah, F. A., Q. Mahmood, N. Rashid, A. Pervez, I. A. Raja, and M. M. Shah. 2015. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable and Sustainable Energy Reviews 42:627–42. doi:10.1016/j.rser.2014.10.053.
  • Shanta, S., M. Paresh, and Ramakant. 2008. Biogas production enhancement by brassica compestries amendment in cattle dung digesters. Elsevier Journal of Biomass and Bioenergy 32 (3):210–15. doi:10.1016/j.biombioe.2007.09.008.
  • Sharma, P., and A. K. Sharma. 2021. Application of response surface methodology for optimization of fuel injection parameters of a dual fuel engine fuelled with producer gas-biodiesel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2021.1892883.
  • Sharma, P., B. B. Sahoo, Z. Said, H. Hadiyanto, X. P. Nguyen, S. Nizetic, Z. Huang, A. T. Hoang, and C. Li. 2022. Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas. International Journal of Hydrogen Energy 1–23. doi:10.1016/j.ijhydene.2022.04.15.
  • Shikun, C., Z. Mingyue, M. Heinz-Peter, Z. Xiaoqin, and L. Zifu (2017) Review paper on the development and application of biogas project for domestic sewage treatment in rural china: opportunities and challenges, Journal of Water, Sanitation and Hygiene for Development, Accessed on 4th Jan. 2019
  • Singh, K. J., and S. S. Sooch. 2004. Comparative study of the economics of different models of family size biogas plants for state of Punjab, India. Energy Conversion and Management 45 (9–10):1329–41. doi:10.1016/j.enconman.2003.09.018.
  • Sittisun, P., N. Tippayawong, and S. Shimpalee. 2019. Gasification of pelletized corn residues with oxygen enriched air and steam. Int. Journal of Renewable Energy Development 8 (3):215–24. doi:10.14710/ijred.8.3.215-224.
  • Sorathia, H. S., P. P. Rathod, and A. S. Sorathiya. 2012. Bio-gas generation and factors affecting the bio-gas generation. A Review Study International Journal of Advanced Engineering Technology 3 (3):72–78.
  • Srinivasan, S. 2008. Positive externalities of domestic biogas initiatives: Implications for financing. Renewable and Sustainable Energy Reviews 12 (5):1476–84. doi:10.1016/j.rser.2007.01.004.
  • Suhartini, S., I. Nurika, R. Paul, and L. Melville. 2021. Estimation of biogas production and the emission savings from anaerobic digestion of fruit-based agro-industrial waste and agricultural crops residues. Bioenerg. Res 14 (3):844–59. doi:10.1007/s12155-020-10209-5.
  • Surendra, K. C., D. Takara, A. G. Hashimoto, and S. K. Khanal. 2014. Biogas as a sustainable energy source for developing countries. Opportunities and Challenges Renewable and Sustainable Energy Reviews 31:846–59. doi:10.1016/j.rser.2013.12.015.
  • Sureshkumar, A., and G. M. Tamilselvan. 2020. Supervised learning algorithm for maximizing the productivity of iot enabled smart biogas plant test. Engineering and Management 83:3714–20.
  • Suyog, V. (2011) Biogas production from kitchen waste, a published B. tech seminar report submitted to the department of biotechnology and medical engineering National Institute of Technology, Rourkela.
  • Szilágyi, Á., A. Bodor, N. Tolvai, K. L. Kovács, L. Bodai, R. Wirth, Z. Bagi, A. Szepesi, V. Markó, B. Kakuk, et al. 2021. A comparative analysis of biogas production from tomato bio-waste in mesophilic batch and continuous anaerobic digestion systems. PLoS ONE 16 (3):e0248654. doi:10.1371/journal.pone.0248654.
  • Taleghani, G., and A. S. Kia. 2005. Technical–economical analysis of the Saveh biogas power plant. Renewable Energy 30 (3):441–46. doi:10.1016/j.renene.2004.06.004.
  • Tatlidil, F., Z. Bayramoglu, and D. Akturk. 2009. Animal manure as one of the main biogas production resources: case of Turkey. Journal of Animal and Veterinary Advancement 8 (2):2473–76.
  • Turkdogan-Aydinol, F. I., and K. Yetilmezsoy. 2010. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating mola. Journal of Hazardous Materials 182 (1–3):460–71. doi:10.1016/j.jhazmat.2010.06.054.
  • Uddin, W., K. Ayeshab, Z. Kamran, H. Aun, K. Bilal, I. Saiful, M. Ishfaqa, K. Imran, M. Adild, and K. Hee Je. 2019. Current and future prospects of small hydropower in Pakistan: A survey. Energy Strategy Reviews 24:166–77. doi:10.1016/j.esr.2019.03.002.
  • Ukpabi, N., O. O. Okorie, J. Isu, and E. Peters. 2017. The production of biogas using cow dung and food waste. International Journal of Materials and Chemistry 7 (2):21–24.
  • Ukpai, P. A., and M. N. Nnabuchi. 2012. Comparative study of biogas production from cow dung, cow peel and cassava peeling using 45 litres biogas digester. Advances in Applied Science Research 3:1864–69.
  • Vieira, A. S., R. A. Stewart, R. Lamberts, and C. D. Beal. 2020. Renewable energy and energy conservation area policy (REECAP) framework: A novel methodology for bottom-up and top-down principles integration. Energy Strategy Reviews 32; 100544 (1):56–149. doi:10.1111/j.1365-2141.1975.tb01808.x.
  • Waewsak, C., A. Nopharatana, and P. Chaiprasert. 2010. Neural-Fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production. Journal of Environmental Science 22 (12):1883–90. doi:10.1016/S1001-0742(09)60334-X.
  • Wahyudi, T., T. B. Kurnani, and J. Claney. 2015. Biogas production in dairies farming Indonesia; a challenge for sustainability. International Journal of Renewable Energy Development 4 (3):219–26. doi:10.14710/ijred.4.3.219-226.
  • Wang, J. 2014. Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. Review Article 2 (10):1–12.
  • Wannapokin, A., R. Ramaraj, and Y. Unpaprom. 2017. An investigation of biogas production potential from fallen teak leaves (tectona grandis. Emer Life Science Resources 3 (1):1–10.
  • Wei, L., K. Qin, M. Xue, C. Yang, J. Jiang, and Q. Zhao 2019. Optimization of the co-digestion of sewage sludge, maize straw and cow manure: Microbial responses and effect of fractional organic characteristics Scientific Reports 9. 2374.
  • Wipa, P., S. Sureewan, and R. Alissara. 2017. Co-Digestion of Napier Grass and Its Silage with Cow Dung for. Methane Production Energies 10:1654. doi:10.3390/en10101654.
  • Xiangchengzhen, M., and S. Yilmaz. 2020. Renewable energy cooperation in Northeast Asia: Incentives, mechanisms and challenges. Energy Strategy Reviews 29:100468. doi:10.1016/j.esr.2020.100468.
  • Yan, W., H. Tyler, and D. S. Corinne. 2021. Tree-based automated machine learning to predict biogas production for anaerobic co-digestion of organic waste. ACS Sustainable Chem. Eng 9:12990–3000. doi:10.1021/acssuschemeng.1c04612.
  • Yaru, S. S., K. A. Adewole, and I. K. Adegun (2013) Comparative study of biogas from cattle dung and mixture of cattle dung with plantain peels, 3RDBiennial Engineering Conference Federal University of Technology, Minna, Nigeria, 135–37.
  • Yaru, S. S., I. K. Adegun, and M. A. Akintunde. 2015. Wobbe index determination of cattle dung biogas. Scientia Agriculture 9 (2):76–82.
  • Yitayal, A., D. Mekibiband, and A. Araya. 2017. Study on biogas production potential of leaves of justicia schimperiana and macro-nutrients on the slurry. International Journal of Waste Resources 7 (3):217–229.
  • Yusuf, M. L., A. Debora, and D. E. Ogheneruona. 2011. Ambient temperature kinetic assessment of biogas production from co-digestion of horse and cow dung. Research in Agricultural Engineering 57 (3):97–104. doi:10.17221/25/2010-RAE.
  • Zerrouki, S., R. Rihanib, K. Lekikota, and I. Ramdhanea. 2021. Enhanced biogas production from anaerobic digestion of wastewater from the fruit juice industry by sonolysis: Experiments and modelling. Water Science & Technology 84 (3):644. doi:10.2166/wst.2021.245.
  • Zulkifi, Z., S. Ismail, M. S. M. Zahari, N. A. Umor, and N. I. A. Aziz. 2015. Screening on biogas optimization of lignocellulose-based materials using enzymatic hydrolysis process. Chemical Engineering Transactions 45:1585–90. doi:10.3303/CET1545265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.