117
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Interfacial tension of acidic heavy crude oil type and dolomite surface wettability: salinity and nanoparticles impact

ORCID Icon, ORCID Icon &
Pages 5340-5357 | Received 25 Feb 2022, Accepted 26 May 2022, Published online: 19 Jun 2022

References

  • Ahmadi, A., and M. Moosavi. 2018. Investigation of the effects of low-salinity waterflooding for improved oil recovery in carbonate reservoir cores. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (9):1035–43. doi:10.1080/15567036.2018.1468514.
  • Alvarado, V., Garcia-Olvera G, Hoyer P, Lehmann TE. Impact of polar components on crude oil-water interfacial film formation: A mechanisms for low-salinity waterflooding. SPE annual Technical Conference and Exhibition Amsterdam, The Netherlands. 2014. OnePetro.
  • Austad, T. 2013. Water-based EOR in carbonates and sandstones: New chemical understanding of the EOR potential using “smart water,” in enhanced oil recovery field case studies. Elsevier 301–335.
  • Chávez-Miyauchi, T. S. E., A. Firoozabadi, and G. G. Fuller. 2016. Nonmonotonic elasticity of the crude oil–brine interface in relation to improved oil recovery. Langmuir 32 (9):2192–98. doi:10.1021/acs.langmuir.5b04354.
  • Chen, S.-Y., Y. Kaufman, K. Kristiansen, D. Seo, A. M. Schrader, M. B. Alotaibi, H. A. Dobbs, N. A. Cadirov, J. R. Boles, S. C. Ayirala, et al. 2017. Effects of salinity on oil recovery (the “Dilution Effect”): Experimental and theoretical studies of crude oil/brine/carbonate surface restructuring and associated physicochemical interactions. Energy & Fuels 31(9):8925–41. doi:10.1021/acs.energyfuels.7b00869.
  • Dehaghani, A. H. S., and R. Daneshfar. 2019. How much would silica nanoparticles enhance the performance of low-salinity water flooding? Petroleum Science 16 (3):591–605. doi:10.1007/s12182-019-0304-z.
  • Dehaghani, A. H. S., M. Hosseini, A. Tajikmansori, H. Moradi. 2020. A mechanistic investigation of the effect of ion-tuned water injection in the presence of cationic surfactant in carbonate rocks: An experimental study. Journal of Molecular Liquids 304:112781. doi:10.1016/j.molliq.2020.112781.
  • Derikvand, Z., Rezaei A, Parsaei R, Riazi M, Torabi F. A. 2020. A mechanistic experimental study on the combined effect of Mg2+, Ca2+, and SO42-ions and a cationic surfactant in improving the surface properties of oil/water/rock system. Colloids and surfaces A. Physicochemical and Engineering Aspects 587:124327.
  • Divandari, H., A. Hemmati-Sarapardeh, M. Schaffie, M. Ranjbar. 2020. Integrating functionalized magnetite nanoparticles with low salinity water and surfactant solution: Interfacial tension study. Fuel 281:118641. doi:10.1016/j.fuel.2020.118641.
  • Emadi, A., and M. Sohrabi. Visual investigation of oil recovery by low salinity water injection: Formation of water micro-dispersions and wettability alteration. SPE annual technical conference and exhibition New Orleans, Louisiana, USA. 2013. OnePetro.
  • Farooq, U., S. Simon, M. T. Tweheyo, G. Øye, J. Sjöblom. 2013. Interfacial tension measurements between oil fractions of a crude oil and aqueous solutions with different ionic composition and pH. Journal of Dispersion Science and Technology 34(5):701–08. doi:10.1080/01932691.2013.783618.
  • Fathi, S. J., T. Austad, and S. Strand. 2011. Water-based enhanced oil recovery (EOR) by “smart water”: Optimal ionic composition for EOR in carbonates. Energy & Fuels 25 (11):5173–79. doi:10.1021/ef201019k.
  • Haagh, M. E. J., I. Siretanu, M. H. G. Duits, F. Mugele. 2017. Salinity-dependent contact angle alteration in oil/brine/silicate systems: The critical role of divalent cations. Langmuir 33(14):3349–57. doi:10.1021/acs.langmuir.6b04470.
  • Hao, J., S. Mohammadkhani, H. Shahverdi, M. N. Esfahany, A. Shapiro. 2019. Mechanisms of smart waterflooding in carbonate oil reservoirs-A review. Journal of Petroleum Science and Engineering 179:276–91. doi:10.1016/j.petrol.2019.04.049.
  • Hua, W., Huang Z, Jubb AM, Allen HC. Ion organization and reversed electric field at air/aqueous interfaces revealed by heterodyne-detected sum frequency generation spectroscopy. 67th International Symposium on Molecular Spectroscopy Ohio State University. 2012.
  • Joonaki, E., and S. Ghanaatian. 2014. The application of nanofluids for enhanced oil recovery: Effects on interfacial tension and coreflooding process. Petroleum Science and Technology 32 (21):2599–607. doi:10.1080/10916466.2013.855228.
  • Kakati, A., and J. S. Sangwai. 2018. Wettability alteration of mineral surface during low-salinity water flooding: Role of salt type, pure alkanes, and model oils containing polar components. Energy & Fuels 32 (3):3127–37. doi:10.1021/acs.energyfuels.7b03727.
  • Kar, T., T.-E. Chávez-Miyauchi, A. Firoozabadi, M. Pal. 2020. Improved oil recovery in carbonates by ultralow concentration of functional molecules in injection water through an increase in interfacial viscoelasticity. Langmuir 36(41):12160–67. doi:10.1021/acs.langmuir.0c01752.
  • Kasiri, N., and A. Bashiri. 2011. Wettability and its effects on oil recovery in fractured and conventional reservoirs. Petroleum Science and Technology 29 (13):1324–33. doi:10.1080/10916460903515540.
  • Kumar, B. 2012. Effect of salinity on the interfacial tension of model and crude oil systems. University of Calgary: Graduate Studies.
  • Lashkarbolooki, M., S. Ayatollahi, and M. Riazi. 2014. Effect of salinity, resin, and asphaltene on the surface properties of acidic crude oil/smart water/rock system. Energy & Fuels 28 (11):6820–29. doi:10.1021/ef5015692.
  • Lashkarbolooki, M., and S. Ayatollahi. 2018. Effects of asphaltene, resin and crude oil type on the interfacial tension of crude oil/brine solution. Fuel 223:261–67. doi:10.1016/j.fuel.2018.03.029.
  • Lim, S., H. Horiuchi, A. D. Nikolov, D. Wasan. 2015. Nanofluids alter the surface wettability of solids. Langmuir 31(21):5827–35. doi:10.1021/acs.langmuir.5b00799.
  • Liu, F., and M. Wang. 2020. Review of low salinity waterflooding mechanisms: Wettability alteration and its impact on oil recovery. Fuel 267:117112. doi:10.1016/j.fuel.2020.117112.
  • Marcus, Y. 1988. Ionic radii in aqueous solutions. Chemical Reviews 88 (8):1475–98. doi:10.1021/cr00090a003.
  • Meyer, R. F., and E. D. Attanasi. 2003. Heavy oil and natural bitumen-strategic petroleum resources. World 434:650–57.
  • Norouzpour, M., M. Nabipour, A. Azdarpour, R. M. Santos. 2020. Isolating the effect of asphaltene content on enhanced oil recovery during low salinity water flooding of carbonate reservoirs. energy sources, part A: Recovery. Utilization, and Environmental Effects 1–14. doi:10.1080/15567036.2020.1851321.
  • Okubo, T. 1995. Surface tension of structured colloidal suspensions of polystyrene and silica spheres at the air-water interface. Journal of Colloid and Interface Science 171 (1):55–62. doi:10.1006/jcis.1995.1150.
  • Rajabi, M. S., R. Moradi, and M. Mehrizadeh. 2021. Experimental investigation of chemical solutions effects on wettability alteration and interfacial tension reduction using nano-alkaline–surfactant fluid: An EOR application in carbonate reservoirs. Journal of Petroleum Exploration and Production 11 (4):1925–41. doi:10.1007/s13202-021-01155-9.
  • Ravera, F., U. Farooq, S. Simon, M. T. Tweheyo, G. Øye, J. Sjöblom. 2006. Effect of nanoparticles on the interfacial properties of liquid/liquid and liquid/air surface layers. The Journal of Physical Chemistry B 110(39):19543–51. doi:10.1021/jp0636468.
  • Rayner-Canham, G. W., G. Rayner-Canham, and T. Overton. 2003. Descriptive inorganic chemistry. New York, United States: Macmillan Learning.
  • Sadegh Rajabi, M., R. Moradi, and H. Pirouz Kavehpour. 2021. An overview of nanotechnology in upstream and downstream of oil and gas industry: Challenges and solutions. Journal of Energy Resources Technology 144 (8):1–52.
  • Shibulal, B., Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ. 2014. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria. An Insight Review. The Scientific World Journal 2014:309159.
  • Shirazi, M., J. Farzaneh, S. Kord, Y. Tamsilian. 2020. Smart water spontaneous imbibition into oil-wet carbonate reservoir cores: Symbiotic and individual behavior of potential determining ions. Journal of Molecular Liquids 299:112102. doi:10.1016/j.molliq.2019.112102.
  • Soleymanzadeh, A., A. Rahmati, M. Yousefi, B. Roshani. 2021. Theoretical and experimental investigation of effect of salinity and asphaltene on IFT of brine and live oil samples. Journal of Petroleum Exploration and Production 11(2):769–81. doi:10.1007/s13202-020-01020-1.
  • Sun, X., Y. Zhang, G. Chen, Z. Gai. 2017. Application of nanoparticles in enhanced oil recovery: A critical review of recent progress. Energies 10(3):345. doi:10.3390/en10030345.
  • Torsater, O., B Engeset, L Hendraningrat, S Suwarno . Improved oil recovery by nanofluids flooding: An experimental study. SPE Kuwait International Petroleum Conference And Exhibition Kuwait City. 2012. Society of Petroleum Engineers.
  • Xie, Y., M. Khishvand, and M. Piri. 2020. Wettability of calcite surfaces: Impacts of brine ionic composition and oil phase polarity at elevated temperature and pressure conditions. Langmuir 36 (22):6079–88. doi:10.1021/acs.langmuir.0c00367.
  • Zabala, R., C. Franco, and F. Cortés. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: A field test. SPE improved oil recovery conference Tulsa, Oklahoma, USA. 2016. OnePetro.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.