211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Coordinated power sharing among multiple subgrids in a photovoltaic-battery based DC microgrid

ORCID Icon, ORCID Icon &
Pages 5358-5380 | Received 09 Nov 2021, Accepted 31 May 2022, Published online: 19 Jun 2022

References

  • Al-Ismail, F. S. 2021. DC microgrid planning, operation, and control: A comprehensive review. IEEE Access 9:36154–72. doi:10.1109/ACCESS.2021.3062840.
  • Babazadeh-Dizaji, R., and M. Hamzeh. March 2020. Distributed hierarchical control for optimal power dispatch in multiple dc microgrids. IEEE Systems Journal 14(1):1015–23. doi: 10.1109/JSYST.2019.2937836.
  • Babazadeh-Dizaji, R., M. Hamzeh, and K. Sheshyekani. 2021. A consensus-based cooperative control for DC microgrids interlinked via multiple converters. IEEE Systems Journal 15(4): 4918–4926. doi:10.1109/JSYST.2020.3034091.
  • Baghaee, H. R., M. Mirsalim, G. B. Gharehpetian, and H. A. Talebi. 2017. A generalized descriptor-system robust H∞ control of autonomous microgrids to improve small and large signal stability considering communication delays and load nonlinearities. International Journal of Electrical Power & Energy Systems 92:63–82. doi:10.1016/j.ijepes.2017.04.007.
  • Barik, A. K., S. Jaiswal, and D. C. Das. 2022. Recent trends and development in hybrid microgrid: A review on energy resource planning and control. International Journal of Sustainable Energy 41 (4):308–22. doi:10.1080/14786451.2021.1910698.
  • Chen, D., L. Xu, and L. Yao. April 2013. DC voltage variation based autonomous control of DC microgrids. IEEE Transactions on Power Delivery 28(2):637–48. doi: 10.1109/TPWRD.2013.2241083.
  • Chen, W., C. Wang, L. H. Saw, A. T. Hoang, and A. A. Bandala. 2021a. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization. Energy Conversion and Management 250:1–17. doi:10.1016/j.enconman.2021.114858.
  • Chen, W., J. Wang, M. Chang, J. K. Mutuku, and A. T. Hoang. 2021b. Efficiency improvement of a vertical-axis wind turbine using a deflector optimized by Taguchi approach with modified additive method. Energy Conversion and Management 245:1–17. doi:10.1016/j.enconman.2021.114609.
  • Dragičević, T., J. M. Guerrero, and J. C. Vasquez. July 2014. A distributed control strategy for coordination of an autonomous LVDC microgrid based on power-line signaling. IEEE Transactions on Industrial Electronics 61(7):3313–26. doi: 10.1109/TIE.2013.2282597.
  • Dragičević, T., X. Lu, J. C. Vasquez, and J. M. Guerrero. May 2016. DC microgrids—part ii: a review of power architectures, applications, and standardization issues. IEEE Transactions on Power Electronics 31(5):3528–49. doi: 10.1109/TPEL.2015.2464277.
  • Golsorkhi, M. S., and M. Savaghebi. August 2021. A decentralized control strategy based on V-I droop for enhancing dynamics of autonomous hybrid AC/DC microgrids. IEEE Transactions on Power Electronics 36(8):9430–40. doi: 10.1109/TPEL.2021.3049813.
  • Hoang, A. T., V. V. Pham, X. P. Nguyen. 2021. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production 305: 1–33. doi:10.1016/j.jclepro.2021.127161.
  • Jin, C., J. Wang, and P. Wang. March 2018. Coordinated secondary control for autonomous hybrid three-port AC/DC/DS microgrid. CSEE Journal of Power and Energy Systems 4(1):1–10. doi: 10.17775/CSEEJPES.2016.01400.
  • Kim, J., J.-H. Jeon, S.-K. Kim, C. Cho, J. Ho Park, H.-M. Kim, K.-Y. Nam . December 2010. Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation. IEEE Transactions on Power Electronics 25 (12):3037–48. doi:10.1109/TPEL.2010.2073488.
  • Kim, J., S. Kim, and J. Jeon. Coordinated state-of-charge control strategy for microgrid during islanded operation. 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Aalborg, Denmark, 2012, pp. 133–39.
  • Kroposki, B., C. Pink, R. DeBlasio, H. Thomas, M. Simões, and P. K. Sen. September 2010. Benefits of power electronic interfaces for distributed energy systems. IEEE Transactions on Energy Conversion 25(3):901–08. doi: 10.1109/TEC.2010.2053975.
  • Kumar, M., S. C. Srivastava, and S. N. Singh. Dynamic performance analysis of DC microgrid with a proposed control strategy for single-phase VCVSI. 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 2014, pp. 1–6.
  • Kumar, M., S. N. Singh, S. C. Srivastava, and M. Ramamoorty. 2015. Development of a control strategy for interconnection of islanded direct current microgrids. IET Renew Power Gener 9 (3):284–96. doi:10.1049/iet-rpg.2013.0375.
  • Li, X., L. Guo, Y. Li, C. Hong, Y. Zhang, Z. Guo, D. Huang, C. Wang . April 2018. Flexible interlinking and coordinated power control of multiple DC microgrids clusters. IEEE Transactions on Sustainable Energy 9 (2):904–15. doi:10.1109/TSTE.2017.2765681.
  • Li, X., Z. Li, L. Guo, J. Zhu, Y. Wang, and C. Wang. 2019. Enhanced dynamic stability control for low-inertia hybrid AC/DC microgrid with distributed energy storage systems. IEEE Access 7:91234–42. doi:10.1109/ACCESS.2019.2926814.
  • Lin, X., R. Zamora, and C. A. Baguley. 2021. A fully filter-based decentralized control with state of charge balancing strategy for battery energy storage systems in autonomous DC microgrid applications. IEEE Access 9:15028–40. doi:10.1109/ACCESS.2021.3052924.
  • Nam, H. K., Y. K. Kim, K.-S. Shim, and K. Y. Lee. 2000. A new eigen-sensitivity theory of augmented matrix and its applications to power system stability. IEEE Trans. Power Syst 15 (1):363–69. doi:10.1109/59.852145.
  • Nasser, N., and M. Fazeli. January 2021. Buffered-microgrid structure for future power networks; a seamless microgrid control. IEEE Transactions on Smart Grid 12(1):131–40. doi: 10.1109/TSG.2020.3015573.
  • Nguyen, T. L., J. M. Guerrero, and G. Griepentrog. March 2020. A self-sustained and flexible control strategy for islanded DC nanogrids without communication links. IEEE Journal of Emerging and Selected Topics in Power Electronics 8(1):877–92. doi: 10.1109/JESTPE.2019.2894564.
  • Nižetić, S., M. Jurčević, D. Čoko, M. Arıcı, and A. T. Hoang. 2021. Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches. Energy 228:1–20. doi:10.1016/j.energy.2021.120546.
  • Panda, M., D. V. Bhaskar, and T. Maity. February 2021. A novel dc bus-signaling based power management strategy for dc microgrid. International Transactions on Electrical Energy Systems 31(2):1–18. doi: 10.1002/2050-7038.12758.
  • Panda, M., D. V. Bhaskar, T. Maity, and G. Sharma. 2022. A fuzzy-based coordinated power management strategy for voltage regulation and state-of-charge balancing in multiple. International Transactions on Electrical Energy Systems 2022:1–17. doi:10.1155/2022/1288985.
  • Saeed, M. H., W. Fangzong, B. A. Kalwar, and S. Iqbal. 2021. A review on microgrids’ challenges & perspectives. IEEE Access 9:166502–17. doi:10.1109/ACCESS.2021.3135083.
  • Sanjeev, P., N. P. Padhy, and P. Agarwal. July 2018. Autonomous power control and management between standalone DC microgrids. IEEE Transactions on Industrial Informatics 14(7):2941–50. doi: 10.1109/TII.2017.2773507.
  • Vuyyuru, U., S. Maiti, and C. Chakraborty. September 2019. Active power flow control between DC microgrids. IEEE Transactions on Smart Grid 10(5):5712–23. doi: 10.1109/TSG.2018.2890548.
  • Wang, P., C. Jin, D. Zhu, Y. Tang, P. C. Loh, and F. H. Choo. February 2015. Distributed control for autonomous operation of a three-port AC/DC/DS hybrid microgrid. IEEE Transactions on Industrial Electronics 62(2):1279–90. doi: 10.1109/TIE.2014.2347913.
  • Wu, D., F. Tang, T. Dragicevic, J. M. Guerrero, and J. C. Vasquez. November 2015. Coordinated control based on bus-signaling and virtual inertia for islanded DC microgrids. IEEE Transactions on Smart Grid 6(6):2627–38. doi: 10.1109/TSG.2014.2387357.
  • Xu, Q., Y. Xu, Z. Xu, L. Xie, and F. Blaabjerg. January 2021. A hierarchically coordinated operation and control scheme for DC microgrid clusters under uncertainty. IEEE Transactions on Sustainable Energy 12(1):273–83. doi: 10.1109/TSTE.2020.2991096.
  • Zaery, M., P. Wang, W. Wang, and D. Xu. 2021. A novel fully distributed fixed-time optimal dispatch of DC multi-microgrids. International Journal of Electrical Power & Energy Systems 129:106792. doi:10.1016/j.ijepes.2021.106792.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.