463
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterization of shape-stable bio-based composite phase change materials for thermal energy storage: coconut oil / activated carbon from cherry stones doped composites

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5381-5397 | Received 29 Mar 2022, Accepted 02 Jun 2022, Published online: 19 Jun 2022

References

  • Angin, D. 2014. Production and characterization of activated carbon from sour cherry stones by zinc chloride. Fuel 115:804–11. doi:10.1016/j.fuel.2013.04.060.
  • Arıcı, M., F. Bilgin, S. Nižetić, and H. Karabay. 2020. PCM integrated to external building walls: An optimization study on maximum activation of latent heat. Applied Thermal Engineering 165:114560. doi:10.1016/j.applthermaleng.2019.114560.
  • Balderrama, J. A. M., M. A. Dourges, A. Magueresse, L. Maheo, H. Deleuze, and P. Glouannec. 2018. Emulsion-templated pullulan monoliths as phase change materials encapsulating matrices. Materials Today Communications 17:466–73. doi:10.1016/j.mtcomm.2018.10.012.
  • Barby, D., and Z. Haq. 1985. US Patent 4522953.
  • Berber, E., F. Çira, and E. H. Mert. 2016. Preparation of porous polyester composites via emulsion templating: Investigation of the morphological, mechanical, and thermal properties. Polymer Composites 37 (5):1531–38. doi:10.1002/pc.23323.
  • Beyhan, B., H. Paksoy, and Y. Daşgan. 2013. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Conversion and Management 74:446–53. doi:10.1016/j.enconman.2013.06.047.
  • Cameron, N. R. 2005. High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46:1439–49. doi:10.1016/j.polymer.2004.11.097.
  • Cárdenas-Ramírez, C., M. A. Gómez, F. Jaramillo, A. G. Fernández, and L. F. Cabeza. 2021. Experimental determination of thermal conductivity of fatty acid binary mixtures and their shape-stabilized composites. Renewable Energy 175:1167–73. doi:10.1016/j.renene.2021.05.080.
  • Carnachan, R. J., M. Bokhari, S. A. Przyborski, and N. R. Cameron. 2006. Tailoring the morphology of emulsion-templated porous polymers. Soft Matter 2 (7):608–16. doi:10.1039/B603211G.
  • Faraj, K., J. Faraj, F. Hachem, H. Bazzi, M. Khaled, and C. Castelain. 2019. Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates. Applied Thermal Engineering 158:113778. doi:10.1016/j.applthermaleng.2019.113778.
  • González-Domínguez, J. M., M. Alexandre-Franco, C. Fernández-González, A. Ansón-Casaos, and V. Gómez-Serrano. 2017. Activated carbon from cherry stones by chemical activation: Influence of the impregnation method on porous structure. Journal of Wood Chemistry and Technology 37 (2):148–62. doi:10.1080/02773813.2016.1253101.
  • González-Domínguez, J. M., M. C. Fernández-González, M. Alexandre-Franco, and V. Gómez-Serrano. 2018. How does phosphoric acid interact with cherry stones? A discussion on overlooked aspects of chemical activation. Wood Science and Technology 52 (6):1645–69. doi:10.1007/s00226-018-1047-5.
  • Gurevitch, I., and M. S. Silverstein. 2010. Polymerized pickering HIPEs: Effects of synthesis parameters on porous structure. Journal of Polymer Science Part A: Polymer Chemistry 48 (7):1516–25. doi:10.1002/pola.23911.
  • Jeon, J., J. H. Park, S. Wi, S. Yang, Y. S. Ok, and S. Kim. 2019. Characterization of biocomposite using coconut oil impregnated biochar as latent heat storage insulation. Chemosphere 236:124269. doi:10.1016/j.chemosphere.2019.06.239.
  • Kahraman Döğüşcü, D., G. Hekimoğlu, and A. Sarı. 2021. High internal phase emulsion templated-polystyrene/carbon nano fiber/hexadecanol composites phase change materials for thermal management applications. Journal of Energy Storage 39:102674. doi:10.1016/j.est.2021.102674.
  • Liu, C., G. Zhang, M. Arıcı, J. Bian, and D. Li. 2019. Thermal performance of non-ventilated multilayer glazing facades filled with phase change material. Solar Energy 177:464–70. doi:10.1016/j.solener.2018.11.044.
  • Maleki, M., P. T. Ahmadi, H. Mohammadi, H. Karimian, R. Ahmadi, and H. B. M. Emrooz. 2019. Photo-thermal conversion structure by infiltration of paraffin in three dimensionally interconnected porous polystyrene-carbon nanotubes (PS-CNT) polyHIPE foam. Solar Energy Materials and Solar Cells 191:266–74. doi:10.1016/j.solmat.2018.11.022.
  • Mert, H. H., and S. Şen. 2016. Synthesis and characterization of polyHIPE composites containing halloysite nanotubes. e-Polymers 16 (6):419–28. doi:10.1515/epoly-2016-0175.
  • Mert, H. H. 2020. PolyHIPE composite based-form stable phase change material for thermal energy storage. International Journal of Energy Research 44 (8):6583–94. doi:10.1002/er.5390.
  • Mert, H. H., H. Okkay, and M. S. Mert. 2022. Form-stable n-hexadecane/zinc borate composite phase change material for thermal energy storage applications in buildings. Sustainable Energy Technologies and Assessments 50:101836. doi:10.1016/j.seta.2021.101836.
  • Mert, H. H., A. Eslek, M. S. Mert, and E. H. Mert. 2022a. Preparation of Pickering-polyHIPEs from surface modified pumice stabilized high internal phase emulsions as supporting materials for lauric acid impregnation. Journal of Applied Polymer Science 139 (14):e51892. doi:10.1002/app.51892.
  • Mert, H. H., B. Kekevi, E. H. Mert, and M. S. Mert. 2022b. Development of composite phase change materials based on n-tetradecane and β-myrcene based foams for cold thermal energy storage applications. Thermochimica Acta 707:179116. doi:10.1016/j.tca.2021.179116.
  • Mozafari, M., A. Lee, and J. Mohammadpour. 2021. Thermal management of single and multiple PCMs based heat sinks for electronics cooling. Thermal Science and Engineering Progress 23:100919. doi:10.1016/j.tsep.2021.100919.
  • Navarro, L., A. Solé, M. Martín, C. Barreneche, L. Olivieri, J. A. Tenorio, and L. F. Cabeza. 2019. Benchmarking of useful phase change materials for a building application. Energy and Buildings 182:45–50. doi:10.1016/j.enbuild.2018.10.005.
  • Németh, B., Á. S. Németh, A. Ujhidy, J. Tóth, L. Trif, J. Gyenis, and T. Feczkó. 2018. Fully bio-originated latent heat storing calcium alginate microcapsules with high coconut oil loading. Solar Energy 170:314–22. doi:10.1016/j.solener.2018.05.066.
  • Onder, O. C., P. Utroša, S. Caserman, M. Podobnik, E. Žagar, and D. Pahovnik. 2021. Preparation of synthetic polypeptide–polyhipe hydrogels with stimuli-responsive behavior. Macromolecules 54 (18):8321–30. doi:10.1021/acs.macromol.1c01490.
  • Parameshwaran, R., S. Harikrishnan, and S. Kalaiselvam. 2010. Energy efficient PCM-based variable air volume air conditioning system for modern buildings. Energy and Buildings 42 (8):1353–60. doi:10.1016/j.enbuild.2010.03.004.
  • Prahas, D., Y. Kartika, N. Indraswati, and S. Ismadji. 2008. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal 140 (1–3):32–42. doi:10.1016/j.cej.2007.08.032.
  • Rafiee, A., S. G. Nasab, and A. Teimouri. 2020. Synthesis and characterization of pistachio shell/nanodiopside nanocomposite and its application for removal of Crystal Violet dye from aqueous solutions using central composite design. International Journal of Environmental Analytical Chemistry 100 (14):1624–49. doi:10.1080/03067319.2019.1655556.
  • Safira, L., N. Putra, T. Trisnadewi, E. Kusrini, T. Meurah, and I. Mahlia. 2020. Thermal properties of sonicated graphene in coconut oil as a phase change material for energy storage in building applications. International Journal of Low-Carbon Technologies 15 (4):629–36. doi:10.1093/ijlct/ctaa018.
  • Saleel, C. A. 2021. A review on the use of coconut oil as an organic phase change material with its melting process, heat transfer, and energy storage characteristics. Journal of Thermal Analysis and Calorimetry 147 (7):4451–72. doi:10.1007/s10973-021-10839-7.
  • Saraç, E. G., E. Öner, and M. V. Kahraman. 2019. Microencapsulated organic coconut oil as a natural phase change material for thermo-regulating cellulosic fabrics. Cellulose 26 (16):8939–50. doi:10.1007/s10570-019-02701-9.
  • Sarı, A., and A. Karaipekli. 2007. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering 27 (8–9):1271–77. doi:10.1016/j.applthermaleng.2006.11.004.
  • Sharma, R., J. G. Jang, and J. W. Hu. 2022. Phase-change materials in concrete: Opportunities and challenges for sustainable construction and building materials. Materials 15 (1):335. doi:10.3390/ma15010335.
  • Silverstein, M. S. 2014. Emulsion-templated porous polymers: A retrospective perspective. Polymer 55 (1):304–20. doi:10.1016/j.polymer.2013.08.068.
  • Tarragona, J., W. Beyne, A. Gracia, L. F. Cabeza, and M. Paepe. 2021. Experimental analysis of a latent thermal energy storage system enhanced with metal foam. Journal of Energy Storage 41:102860. doi:10.1016/j.est.2021.102860.
  • Teggar, M., M. Arıcı, M. S. Mert, S. S. M. Ajarostaghi, H. Niyas, E. Tunçbilek, K. A. R. Ismail, Z. Younsi, A. T. Benhouia, and E. H. Mezaache. 2022. A comprehensive review of micro/nano enhanced phase change materials. Journal of Thermal Analysis and Calorimetry 147 (6):3989–4016. doi:10.1007/s10973-021-10808-0.
  • Türkoğlu, Z., H. H. Mert, E. H. Mert, H. Ocak, and M. S. Mert. 2022. Cellulose nanocrystals supported—PolyHIPE foams for low-temperature latent heat storage applications. Journal of Applied Polymer Science 139 (11):e51785. doi:10.1002/app.51785.
  • Umair, M. M., Y. Zhang, K. Iqbal, S. Zhang, and B. Tang. 2019. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review. Applied Energy 235:846–73. doi:10.1016/j.apenergy.2018.11.017.
  • Vijayalakshmi, P., V. Sathya Selva Bala, K. V. Thiruvengadaravi, P. Panneerselvam, M. Palanichamy, and S. Sivanesan. 2010. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from pistachio nut Shell. Separation Science and Technology 46 (1):155–63. doi:10.1080/01496395.2010.484006.
  • Wonorahardjo, S., I. M. Sutjahja, E. Tunçbilek, R. A. Achsani, M. Arıcı, and N. Rahmah. 2021. PCM-based passive air conditioner in urban houses for the tropical climates: An experimental analysis on the stratum air circulation. Building and Environment 192:107632. doi:10.1016/j.buildenv.2021.107632.
  • Yang, R., D. Li, S. L. Salazar, Z. Rao, M. Arıcı, and W. Wei. 2021. Photothermal properties and photothermal conversion performance of nano-enhanced paraffin as a phase change thermal energy storage material. Solar Energy Materials and Solar Cells 219:110792. doi:10.1016/j.solmat.2020.110792.
  • Ying, B. A., Y. L. Kwok, Y. Li, Q. Y. Zhu, and C. Y. Yeung. 2004. Assessing the performance of textiles incorporating phase change materials. Polymer Testing 23 (5):541–49. doi:10.1016/j.polymertesting.2003.11.002.
  • Zhang, T., Z. Xu, X. Li, G. Gao, and Y. Zhao. 2020. Closed-cell, phase change material-encapsulated, emulsion-templated monoliths for latent heat storage: Flexibility and rapid preparation. Applied Materials Today 21:100831. doi:10.1016/j.apmt.2020.100831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.