130
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of novel eco-friendly hybrid biocomposites based on carboxymethyl chitosan /polypropylene glycol @ activated carbon for the efficient removal of Cr (III) from the aquatic medium

ORCID Icon, & ORCID Icon
Pages 5398-5420 | Received 27 Apr 2022, Accepted 29 May 2022, Published online: 19 Jun 2022

References

  • Abdel Hafez, O. M., R. R. Mohamed, M. T. H. Abou Kana, E. A. Mohamed, and N. A. Negm. 2021. Treatment of industrial wastewater containing copper and lead ions using new carboxymethyl chitosan-activated carbon derivatives. Egyptian Journal of Chemistry. doi:10.21608/ejchem.2021.82163.4050.
  • Abubshait, H. A., A. A. Farag, M. A. El-Raouf, N. A. Negm, and E. A. Mohamed. 2021. Graphene oxide modified thiosemicarbazide nanocomposite as an effective eliminator for heavy metal ions. Journal of Molecular Liquids 327:114790. doi:10.1016/j.molliq.2020.114790.
  • Altalhi, A., H. Hashem, N. Negm, E. Mohamed, and E. Azmy. 2021. Synthesis, characterization, computational study, and screening of novel 1-phenyl-4-(2-phenylacetyl)-thiosemicarbazide derivatives for their antioxidant and antimicrobial activities. Journal of Molecular Liquids 333:115977. doi: 10.1016/j.molliq.2021.115977.
  • Altalhi, A. A., E. A. Mohammed, S. S. M. Morsy, N. A. Negm, and A. A. Farag. 2021. Catalyzed production of different grade biofuels using metal ions modified activated carbon of cellulosic wastes. Fuel 295:120646. doi:10.1016/j.fuel.2021.120646.
  • Amer, A., G. H. Sayed, R. M. Ramadan, A. M. Rabie, N. A. Negm, A. A. Farag, and E. A. Mohammed. 2021. Assessment of 3-amino-1H-1,2,4-triazole modified layered double hydroxide in effective remediation of heavy metal ions from aqueous environment. Journal of Molecular Liquids 341:116935. doi:10.1016/j.molliq.2021.116935.
  • Antonino, R. S. C. M. D. Q., B. R. P. L. Fook, V. A. D. O. Lima, R. Í. D. F. Rached, E. P. N. Lima, R. J. D. S. Lima, C. A. P. Covas, and M. V. L. Fook. 2017. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Marine Drug 15:1–12. doi:10.3390/md15050141.
  • Anwer, K. E., A. A. Farag, E. A. Mohamed, E. M. Azmy, and G. H. Sayed. 2021. Corrosion inhibition performance and computational studies of pyridine and pyran derivatives for API X-65 steel in 6M H2SO4. Journal of Industrial and Engineering Chemistry 97:523–38. doi:10.1016/j.jiec.2021.03.016.
  • Atay, H. Y. 2020. Antibacterial Activity of Chitosan-Based Systems. Functional Chitosan: Drug Delivery and Biomedical Applications. Functional Chitosan, 457 - 489, Springer. doi:10.1007/978/981/15/0263/7/15
  • Azmana, M., S. Mahmood, A. R. Hilles, A. Rahman, M. A. B. Arifin, and S. Ahmed. 2021. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules 185:832–48. doi:10.1016/j.ijbiomac.2021.07.023.
  • Azmy, E. A. M., H. E. Hashem, E. A. Mohamed, and N. A. Negm. 2019. Synthesis, characterization, swelling and antimicrobial efficacies of chemically modified chitosan biopolymer. Journal of Molecular Liquids 284:748–54. doi:10.1016/j.molliq.2019.04.054.
  • Babapour, M., M. Hadi Dehghani, M. Alimohammadi, M. Moghadam Arjmand, M. Salari, L. Rasuli, and N. Ahmad Khan. 2021. Adsorption of Cr(VI) from aqueous solution using mesoporous metal-organic framework-5 functionalized with the amino acids: Characterization, optimization, linear and nonlinear kinetic models. Journal of Molecular Liquids 117835. doi:10.1016/j.molliq.2021.117835.
  • Badawy, M. E. I., E. I. Rabea, A. R. Eid, M. M. Badr, and G. I. K. Marei. 2021. Structure and antimicrobial comparison between N-(benzyl) chitosan derivatives and N-(benzyl) chitosan tripolyphosphate nanoparticles against bacteria, fungi, and yeast. International Journal of Biological Macromolecules 186:724–34. doi:10.1016/j.ijbiomac.2021.07.086.
  • Bădescu, I. S., D. Bulgariu, I. Ahmad, and L. Bulgariu. 2018. Valorisation possibilities of exhausted biosorbents loaded with metal ions – A review. Journal of Environmental Management 224:288–97. doi:10.1016/j.jenvman.2018.07.066.
  • Bin, O. A., and D. Tawfik. 2022. Synthesis of polyamide grafted on biosupport as polymeric adsorbents for the removal of dye and metal ions. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-02382-8.
  • Cara, I. G., M. Filip, L. Bulgariu, L. Raus, D. Topa, and G. Jitareanu. 2021. Environmental remediation of metribuzin herbicide by mesoporous carbon-rich from wheat straw. Applied Sciences 11 (11):4935–48. doi:10.3390/app11114935.
  • Cleary, M. 2019. Comparative Study of Adsorption of Dyes onto Activated Carbon and Modified Activated Carbon by Chitosan Impregnation. Journal of Chemical Information and Modeling 53:1689–99.
  • da Silva Alves, D. C., B. Healy, L. A. D. A. Pinto, T. R. S. Cadaval, and C. B. Breslin. 2021. Recent developments in Chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules 26. doi:10.3390/molecules26030594.
  • El-Ghany, N. A. A. 2017. Antimicrobial activity of new carboxymethyl chitosan–carbon nanotube biocomposites and their swell ability in different pH media. Journal of Carbohydrate Chemistry 36 (1):31–44. doi:10.1080/07328303.2017.1353610.
  • Elshaarawy, R. F. M., L. A. Ismail, M. Y. Alfaifi, M. A. Rizk, E. E. Eltamany, and C. Janiak. 2020. Inhibitory activity of biofunctionalized silver-capped N-methylated water-soluble chitosan thiomer for microbial and biofilm infections. International Journal of Biological Macromolecules 152:709–17. doi:10.1016/j.ijbiomac.2020.02.284.
  • Ezzati, R. 2020. Derivation of Pseudo-First, Pseudo-Second-Order and Modified Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for adsorption. Chemical Engineering Journal 392:123705. doi:10.1016/j.cej.2019.123705.
  • Farag, A. A., A. M. Eid, M. M. Shaban, E. A. Mohamed, and G. Raju. 2021a. Integrated modeling, surface, electrochemical, and biocidal investigations of novel benzothiazoles as corrosion inhibitors for shale formation well stimulation. Journal of Molecular Liquids 336:116315. doi:10.1016/j.molliq.2021.116315.
  • Farag, A. A., E. A. Mohamed, G. H. Sayed, and K. E. Anwer. 2021b. Experimental/computational assessments of API steel in 6 M H2SO4 medium containing novel pyridine derivatives as corrosion inhibitors. Journal of Molecular Liquids 330:115705. doi:10.1016/j.molliq.2021.115705.
  • Forteza, R., and G. N. Nifas. 2019. Synthesis of Activated Carbon /Chitosan Composites and Expanded Graphite for Symmetric Supercapacitor. Journal of Material Sciences & Engineering. doi:10.1091/mbc.E18-07-0415.
  • Freundlich, H. 1907. Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie 57U (1):385–470. doi:10.1515/zpch-1907-5723.
  • García-González, A., R. E. Zavala-Arce, P. Avila-Pérez, N. A. Rangel-Vazquez, J. J. Salazar-Rábago, J. L. García-Rivas, and B. García-Gaitán. 2021. Experimental and theoretical study of dyes adsorption process on chitosan-based cryogel. International Journal of Biological Macromolecules 169:75–84. doi:10.1016/j.ijbiomac.2020.12.100.
  • Grząbka-Zasadzińska, A., I. Ratajczak, K. Król, M. Woźniak, and S. Borysiak. 2021. The influence of crystalline structure of cellulose in chitosan-based biocomposites on removal of Ca(II), Mg(II), Fe(III) ion in aqueous solutions. Cellulose 28 (9):5745–59. doi:10.1007/s10570/021/03899/3.
  • Hasan, M., A. L. Ahmad, and B. H. Hameed. 2008. Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chemical Engineering Journal 136 (2–3):164–72. doi: 10.1016/j.cej.2007.03.038.
  • Hashem, A., A. J. Fletcher, H. Younis, H. Mauof, and A. Abou-Okeil. 2020. Adsorption of Pb(II) ions from contaminated water by 1,2,3,4-butanetetracarboxylic acid-modified microcrystalline cellulose: Isotherms, kinetics, and thermodynamic studies. International Journal of Biological Macromolecules 164:3193–203. doi:10.1016/j.ijbiomac.2020.08.159.
  • Hashem, H. E., E. A. Mohamed, A. A. Farag, N. A. Negm, and E. A. M. Azmy. 2021. New heterocyclic Schiff base-metal complex: Synthesis, characterization, density functional theory study, and antimicrobial evaluation. Applied Organometallic Chemistry 35 (9). doi: 10.1002/aoc.6322.
  • He, B., Y. Zhang, B. Li, Y. Chen, and L. Zhu. 2021. Preparation and hydrophobic modification of carboxymethyl chitosan aerogels and their application as an oil adsorption material. Journal of Environmental Chemical Engineering 9:106333. doi:10.1016/j.jece.2021.106333.
  • Hemming, E. B., A. F. Masters, A. Perosa, M. Selva, and T. Maschmeyer. 2019. Single-step methylation of chitosan using dimethyl carbonate as a green methylating agent. Molecules 24 (21):6–8. doi:10.3390/molecules24213986.
  • Ho, Y. S., and G. Mckay. 1998. Kinetic Models Applied To Pollutant Removal on Various. Sorbents 76: 332-340. doi:10.1205/0957/5829/852/9696.
  • Ho, Y. S., and G. McKay. 1999. Pseudo-second order model for sorption processes. Process Biochemistry 34 (5):451–65. doi:10.1016/S0032-9592(98)00112-5.
  • Ho, Y. S., J. C. Y. Ng, and G. McKay. 2000. Kinetics of pollutant sorption by biosorbents: review. Separation and Purification Technology 29 (2):189–232. doi:10.1081/SPM-100100009.
  • Jamshidi, D., and M. R. Sazegar. 2020. Antibacterial Activity of a Novel Biocomposite Chitosan/Graphite Based on Zinc-Grafted Mesoporous Silica Nanoparticles. International Journal of Nanomedicine 15:871–83. doi:10.2147/IJN.S234043.
  • Javadian, H., M. Ruiz, T. A. Saleh, and A. M. Sastre. 2020. Ca-alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 magnetic bionanocomposite: Synthesis, characterization and application for single adsorption of Nd+3, Tb+3, and Dy+3 rare earth elements from aqueous media. Journal of Molecular Liquids 306:112760. doi:10.1016/j.molliq.2020.112760.
  • Jia, J., Y. Liu, and S. Sun. 2021. Preparation and Characterization of Chitosan/Bentonite Composites for Cr (VI) Removal from Aqueous Solutions. Adsorption Science & Technology 2021:6681486. doi:10.1155/2021/6681486.
  • Kannamba, B., K. L. Reddy, and B. V. AppaRao. 2010. Removal of Cu(II) from aqueous solutions using chemically modified chitosan. Journal of Hazardous Materials 175 (1–3):939–48. doi:10.1016/j.jhazmat.2009.10.098.
  • Keshavarz, M., R. Foroutan, F. Papari, L. Bulgariu, and H. Esmaeili. 2021. Synthesis of CaO/Fe2O3 nanocomposite as an efficient nanoadsorbent for the treatment of wastewater containing Cr (III). Separation Science and Technology 56 (8):1328–41. doi:10.1080/01496395.2020.1778727.
  • Keshvardoostchokami, M., M. Majidi, A. Zamani, and B. Liu. 2021. A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate polymers 273:118625. doi:10.1016/j.carbpol.2021.118625.
  • Kumar, R., H. Sharma, M. Vishwakarma, S. Joshi, N. Bhandari, and N. D. Kandpal. 2020. Adsorptive Removal of Pb(II), Cu(II) and Cd(II) Ions onto Rubus ellipticus as Low-Cost Biosorbent. Asian Journal of Chemistry 32 (3):495–500. doi:10.14233/ajchem.2020.22361.
  • Li, W., H. Wei, Y. Liu, S. Li, G. Wang, T. Guo, and H. Han. 2021. An in situ reactive spray-drying strategy for facile preparation of starch-chitosan based hydrogel microspheres for water treatment application. Chemical Engineering and Processing - Process Intensification 168:108548. doi:10.1016/j.cep.2021.108548.
  • Liu, H., F. Zhang, and Z. Peng. 2019. Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites. Scientific Reports 9:1–12. doi:10.1038/s41598-019-40344-9.
  • Liu, X., Zhao, Y. Liu, and T.-A. Zhang. 2021. Review on preparation and adsorption properties of chitosan and chitosan composites. Polymer Bulletin. doi:10.1007/s00289-021-03626-9.
  • Liu, Y., L. Li, Z. Duan, Q. You, G. Liao, and D. Wang. 2021. Chitosan modified nitrogen-doped porous carbon composite as a highly-efficient adsorbent for phenolic pollutants removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects 610:125728. doi:10.1016/j.colsurfa.2020.125728.
  • Mousavi-Qeydari, S. R., A. Samimi, D. Mohebbi-Kalhori, and E. Ahmadi. 2021. A mesoporous melamine/chitosan/activated carbon biocomposite: Preparation, characterization and its application for Ni (II) uptake via ion imprinting. International Journal of Biological Macromolecules 188:126–36. doi:10.1016/j.ijbiomac.2021.08.020.
  • Negm, N., A. El, D. Emam, and H. Mohamad. 2012. Environmentally Friendly Nonionic Surfactants Derived from Tannic Acid: Synthesis, Characterization and Surface Activity. Journal of Surfactants and Detergents 15. doi:10.1007/s11743-011-1326-8.
  • Negm, N. A., G. H. Sayed, F. Z. Yehia, O. I. H. Dimitry, A. M. Rabie, and E. A. M. Azmy. 2016. Production of biodiesel production from castor oil using modified montmorillonite clay. Egyptian Journal of Chemistry 59:1045–60. doi:10.21608/ejchem.2016.1551.
  • Negm, N. A., H. A. Abubshait, S. A. Abubshait, M. T. H. Abou Kana, E. A. Mohamed, and M. M. Betiha. 2020. Performance of chitosan polymer as platform during sensors fabrication and sensing applications. International Journal of Biological Macromolecules 165:402–35. doi:10.1016/j.ijbiomac.2020.09.130.
  • Raafat, D., K. Von Bargen, A. Haas, and H. G. Sahl. 2008. Insights into the mode of action of chitosan as an antibacterial compound. Applied and Environmental Microbiology 74 (12):3764–73. doi:10.1128/AEM.00453-08.
  • Sadeek, S. A., E. A. Mohammed, M. Shaban, M. T. H. Abou, and N. A. Negm. 2020. Synthesis, characterization and catalytic performances of activated carbon-doped transition metals during biofuel production from waste cooking oils. Journal of Molecular Liquids 306:112749. doi:10.1016/j.molliq.2020.112749.
  • Saleh, T. A., A. M. Musa, and S. A. Ali. 2016. Synthesis of hydrophobic cross-linked polyzwitterionic acid for simultaneous sorption of Eriochrome black T and chromium ions from binary hazardous waters. Journal of Colloid and Interface Science 468:324–33. doi:10.1016/j.jcis.2016.01.057.
  • Saleh, T. 2020a. Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology & Innovation 20:101067. doi:10.1016/j.eti.2020.101067.
  • Saleh, T. A. 2020b. Trends in the sample preparation and analysis of nanomaterials as environmental contaminants. Trends in Environmental Analytical Chemistry 28:e00101. doi:10.1016/j.teac.2020.e00101.
  • Shakoor, M. B., N. K. Niazi, I. Bibi, G. Murtaza, A. Kunhikrishnan, B. Seshadri, M. Shahid, S. Ali, N. S. Bolan, and Y. S. Ok. 2016. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Critical Reviews in Environmental Science and Technology 46 (5):467–99. doi:10.1080/10643389.2015.1109910.
  • Shamsuddin, M. S., N. R. N. Yusoff, and M. A. Sulaiman. 2016. Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4. Procedia Chemistry 19:558–65. doi:10.1016/j.proche.2016.03.053.
  • Sirajudheen, P., N. C. Poovathumkuzhi, S. Vigneshwaran, B. M. Chelaveettil, and S. Meenakshi. 2021. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water — A comprehensive review. Carbohydrate polymers 273:118604. doi:10.1016/j.carbpol.2021.118604.
  • Sun, S., and A. Wang. 2006. Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan. Journal of Hazardous Materials 131 (1–3):103–11. doi:10.1016/j.jhazmat.2005.09.012.
  • Tantala, J., K. Thumanu, and C. Rachtanapun. 2019. An assessment of antibacterial mode of action of chitosan on Listeria innocua cells using real-time HATR-FTIR spectroscopy. International Journal of Biological Macromolecules 135:386–93. doi:10.1016/j.ijbiomac.2019.05.032.
  • Uchimiya, M., I. M. Lima, K. Thomas Klasson, S. Chang, L. H. Wartelle, and J. E. Rodgers. 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. Journal of Agricultural and Food Chemistry 58:5538–44. doi:10.1021/jf9044217.
  • Ulu, A., E. Birhanlı, S. Köytepe, and B. Ateş. 2020. Chitosan/polypropylene glycol hydrogel composite film designed with TiO2 nanoparticles: A promising scaffold of biomedical applications. International Journal of Biological Macromolecules 163:529–40. doi:10.1016/j.ijbiomac.2020.07.015.
  • Varma, A. J., S. V. Deshpande, and J. F. Kennedy. 2004. Metal complexation by chitosan and its derivatives: a review. Carbohydrate polymers 55 (1):77–93. doi:10.1016/j.carbpol.2003.08.005.
  • Wang, T., P. Chen, M. Li, X. Luo, L. Liu, G. Zeng, J. Jiang, K. Huang, X. Xu, S. Li, et al. 2019a. Synthesis of La2(C2O4)3 nanoprisms decorated with Fe3O4@m(ZrO2-CeO2) nanospheres and their application for effective fluoride removal. Journal of Chemical Technology and Biotechnology 94:3650–60. doi:10.1002/jctb.6170.
  • Wang, X., L. Chen, L. Wang, Q. Fan, D. Pan, J. Li, F. Chi, Y. Xie, S. Yu, C. Xiao, et al. 2019b. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China. Chemistry. doi:10.1007/s11426-019-9492-4.
  • Wang, W., J. Ni, L. Chen, Z. Ai, Y. Zhao, and S. Song. 2020. Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation. International Journal of Biological Macromolecules 165:1–10. doi:10.1016/j.ijbiomac.2020.09.154.
  • Xu, P., G. M. Zeng, D. L. Huang, M. Yan, M. Chen, C. Lai, H. Jiang, H. P. Wu, G. M. Chen, and J. Wan. 2017. Fabrication of reduced glutathione functionalized iron oxide nanoparticles for magnetic removal of Pb(II) from wastewater. Journal of the Taiwan Institute of Chemical Engineers 71:165–73. doi:10.1016/j.jtice.2016.11.031.
  • Zeng, J., X. Ren, S. Zhu, and Y. Gao. 2021. Fabrication and characterization of an economical active film of chitosan incorporated pomegranate peel. International Journal of Biological Macromolecules 192:1160–68. doi:10.1016/j.ijbiomac.2021.10.064.
  • Ziemniak, S. E., M. E. Jones, and K. E. S. Combs. 1993. Solubility behavior of titanium(IV) oxide in alkaline media at elevated temperatures. Journal of Solution Chemistry 22 (7):601–23. doi:10.1007/BF00646781.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.