201
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Immobilization of Cr(III) and Cr(VI) from contaminated aqueous solution by using sewage produced biochar: Affecting factors and mechanisms

ORCID Icon, , , & ORCID Icon
Pages 5812-5828 | Received 27 Jan 2022, Accepted 06 Jun 2022, Published online: 30 Jun 2022

References

  • Agrafioti, E., D. Kalderis, and E. Diamadopoulos. 2014. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. Journal of Environmental Management 133:309–14. doi:10.1016/j.jenvman.2013.12.007.
  • Al-Wabel, M. I., A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. Usman. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology 131:374–79. doi:10.1016/j.biortech.2012.12.165.
  • Batool, S., M. Idrees, M. I. Al-Wabel, M. Ahmad, K. Hina, H. Ullah, L. Cui, and Q. Hussain. 2019. Sorption of Cr (III) from aqueous media via naturally functionalized microporous biochar: Mechanistic study. Microchemical Journal 144:242–53. doi:10.1016/j.microc.2018.09.012.
  • Cai, W., J. Wei, Z. Li, Y. Liu, J. Zhou, and B. Han. 2019. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull. Colloids and Surfaces A: Physicochemical and Engineering Aspects 563:102–11. doi:10.1016/j.colsurfa.2018.11.062.
  • Chen, T., Y. Zhang, H. Wang, W. Lu, Z. Zhou, Y. Zhang, and L. Ren. 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technology 164:47–54. doi:10.1016/j.biortech.2014.04.048.
  • Chen, T., Z. Zhou, S. Xu, H. Wang, and W. Lu. 2015a. Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresource Technology 190:388–94. doi:10.1016/j.biortech.2015.04.115.
  • Chen, T., Z. Zhou, R. Han, R. Meng, H. Wang, and W. Lu. 2015b. Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism. Chemosphere 134:286–93. doi:10.1016/j.chemosphere.2015.04.052.
  • Chen, X., G. Fan, H. Li, Y. Li, R. Zhang, Y. Huang, and X. Xu. 2022. Nanoscale zero-valent iron particles supported on sludge-based biochar for the removal of chromium (VI) from aqueous system. Environmental Science and Pollution Research 29 (3):3853–63. doi:10.1007/s11356-021-15969-x.
  • Copello, G. J., F. Varela, R. M. Vivot, and L. E. Díaz. 2008. Immobilized chitosan as biosorbent for the removal of Cd (II), Cr (III) and Cr (VI) from aqueous solutions. Bioresource Technology 99 (14):6538–44. doi:10.1016/j.biortech.2007.11.055.
  • Crisler, G. B., G. A. Burk, P. Simmons, M. Quigley, and T. Mlsna. 2020. Lead removal using biochars obtained from slow pyrolysis of dry and water-soaked pecan shell biomass. Separation Science and Technology 55 (11):1947–56. doi:10.1080/01496395.2019.1617740.
  • Devi, P., and A. K. Saroha. 2013. Effect of temperature on biochar properties during paper mill sludge pyrolysis. International Journal of ChemTech Research 5 (2):682–87.
  • Dong, X., L. Q. Ma, and Y. Li. 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials 190 (1–3):909–15. doi:10.1016/j.jhazmat.2011.04.008.
  • Fan, Z., Q. Zhang, B. Gao, M. Li, C. Liu, and Y. Qiu. 2019. Removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention. Chemosphere 217:85–94. doi:10.1016/j.chemosphere.2018.11.009.
  • Gope, M., and R. Saha. 2021. Removal of heavy metals from industrial effluents by using biochar. In Intelligent environmental data monitoring for pollution management, 25–48. Elsevier: Academic Press.
  • Goswami, R., J. Shim, S. Deka, D. Kumari, R. Kataki, and M. Kumar. 2016. Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures. Ecological Engineering 97:444–51. doi:10.1016/j.ecoleng.2016.10.007.
  • Han, X., Y. Zhang, C. Zheng, X. Yu, S. Li, and W. Wei. 2021. Enhanced Cr (VI) removal from water using a green synthesized nanocrystalline chlorapatite: Physicochemical interpretations and fixed-bed column mathematical model study. Chemosphere 264:128421. doi:10.1016/j.chemosphere.2020.128421.
  • Hashem, M. A., M. Hasan, M. A. Momen, S. Payel, and M. S. Nur-A-Tomal. 2020. Water hyacinth biochar for trivalent chromium adsorption from tannery wastewater. Environmental and Sustainability Indicators 5:100022. doi:10.1016/j.indic.2020.100022.
  • Idrees, M., S. Batool, T. Kalsoom, S. Yasmeen, A. Kalsoom, S. Raina, Q. Zhuang, and J. Kong. 2018. Animal manure-derived biochars produced via fast pyrolysis for the removal of divalent copper from aqueous media. Journal of Environmental Management 213:109–18. doi:10.1016/j.jenvman.2018.02.003.
  • Jin, H., S. Capareda, Z. Chang, J. Gao, Y. Xu, and J. Zhang. 2014. Biochar pyrolytically produced from municipal solid wastes for aqueous As (V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology 169:622–29. doi:10.1016/j.biortech.2014.06.103.
  • Karimi-Maleh, H., A. Ayati, S. Ghanbari, Y. Orooji, B. Tanhaei, F. Karimi, M. Alizadeh, J. Rouhi, L. Fu, and M. Sillanpää. 2021. Recent advances in removal techniques of Cr (VI) toxic ion from aqueous solution: A comprehensive review. Journal of Molecular Liquids 329:115062.
  • Khan, S., M. Waqas, F. Ding, I. Shamshad, H. P. H. Arp, and G. Li. 2015. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). Journal of Hazardous Materials 300:243–53. doi:10.1016/j.jhazmat.2015.06.050.
  • Kooh, M. R. R., M. K. Dahri, and L. B. Lim. 2017. Removal of the methyl violet 2B dye from aqueous solution using sustainable adsorbent Artocarpus odoratissimus stem axis. Applied Water Science 7 (7):3573–81. doi:10.1007/s13201-016-0496-y.
  • Kyzas, G. Z. 2012. Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions. Materials 5 (10):1826–40. doi:10.3390/ma5101826.
  • Liu, H. Q., X. Xu, Z. H. Wu, G. X. Wei, and L. Sun. 2015. Removal of heavy metals from aqueous solution using biochar derived from biomass and sewage sludge. In Applied Mechanics and Materials, Vol. 768, 89–95. https://doi.org/10.4028/www.scientific.net/AMM.768.89. Trans Tech Publications Ltd.
  • Lu, H., W. Zhang, S. Wang, L. Zhuang, Y. Yang, and R. Qiu. 2013. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 102:137–43. doi:10.1016/j.jaap.2013.03.004.
  • Ma, W., G. Du, J. Li, Y. Fang, L. A. Hou, G. Chen, and D. Ma. 2017. Supercritical water pyrolysis of sewage sludge. Waste Management 59:371–78. doi:10.1016/j.wasman.2016.10.053.
  • Mahanty, B., and S. Mondal. 2021. Synthesis of magnetic biochar using agricultural waste for the separation of Cr (VI) from aqueous solution. Arabian Journal for Science and Engineering 46(11):10803–10818.
  • Mahmoud, M. E., and R. H. A. Mohamed. 2014. Biosorption and removal of Cr (VI)–Cr (III) from water by eco-friendly gelatin biosorbent. Journal of Environmental Chemical Engineering 2 (1):715–22. doi:10.1016/j.jece.2013.11.011.
  • Mandal, S., B. C. Verma, G. I. Ramkrushna, R. K. Singh, and D. J. Rajkhowa. 2015. Characterization of biochar obtained from weeds and its effect on soil properties of North Eastern Region of India. Journal of Environmental Biology 36 (2):499.
  • Méndez, A., A. M. Terradillos, and G. Gascó. 2013. Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis 102:124–30. doi:10.1016/j.jaap.2013.03.006.
  • Murad, H. A., M. Ahmad, J. Bundschuh, Y. Hashimoto, M. Zhang, B. Sarkar, and Y. S. Ok. 2022. A remediation approach to chromium-contaminated water and soil using engineered biochar derived from peanut shell. Environmental Research 204:112125. doi:10.1016/j.envres.2021.112125.
  • Musah, B. I., Y. Li, Q. Xiao, and S. Song. 2017. Cu2+ removal from aqueous solution by Platanus orientalis leaf powders. International Journal of Environment, Agriculture and Biotechnology 2 (6):239004. doi:10.22161/ijeab/2.6.41.
  • Phoungthong, K., H. Zhang, L. M. Shao, and P. J. He. 2018. Leaching characteristics and phytotoxic effects of sewage sludge biochar. Journal of Material Cycles and Waste Management 20 (4):2089–99. doi:10.1007/s10163-018-0763-0.
  • Qasem, N. A., R. H. Mohammed, and D. U. Lawal. 2021. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 4 (1):1–15.
  • Qu, J., Y. Wang, X. Tian, Z. Jiang, F. Deng, Y. Tao, Q. Jiang, L. Wang, and Y. Zhang. 2021. KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. Journal of Hazardous Materials 401:123292. doi:10.1016/j.jhazmat.2020.123292.
  • Rangabhashiyam, S., P. V. Dos Santos Lins, L. M. de Magalhães Oliveira, P. Sepulveda, J. O. Ighalo, A. U. Rajapaksha, and L. Meili. 2022. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environmental Pollution 293:118581. doi:10.1016/j.envpol.2021.118581.
  • Saha, R., K. Mukherjee, I. Saha, A. Ghosh, S. K. Ghosh, and B. Saha. 2013. Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Research on Chemical Intermediates 39 (5):2245–57. doi:10.1007/s11164-012-0754-z.
  • Selvaraj, K., S. Manonmani, and S. Pattabhi. 2003. Removal of hexavalent chromium using distillery sludge. Bioresource Technology 89 (2):207–11. doi:10.1016/S0960-8524(03)00062-2.
  • Shaheen, S. M., N. K. Niazi, N. E. Hassan, I. Bibi, H. Wang, D. C. Tsang, Y. S. Ok, N. Bolan, and J. Rinklebe. 2019. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review. International Materials Reviews 64 (4):216–47. doi:10.1080/09506608.2018.1473096.
  • Shang, J., J. Pi, M. Zong, Y. Wang, W. Li, and Q. Liao. 2016. Chromium removal using magnetic biochar derived from herb-residue. Journal of the Taiwan Institute of Chemical Engineers 68:289–94. doi:10.1016/j.jtice.2016.09.012.
  • Srivatsav, P., B. S. Bhargav, V. Shanmugasundaram, J. Arun, K. P. Gopinath, and A. Bhatnagar. 2020. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: A review. Water 12 (12):3561. doi:10.3390/w12123561.
  • Sun, Y., F. Yu, L. Li, and J. Ma. 2021. Adsorption-reduction synergistic effect for rapid removal of Cr (VI) ions on superelastic NH2-graphene sponge. Chemical Engineering Journal 421:129933. doi:10.1016/j.cej.2021.129933.
  • Teng, D., B. Zhang, G. Xu, B. Wang, K. Mao, J. Wang, J. Sun, X. Feng, Z. Yang, and H. Zhang. 2020. Efficient removal of Cd (II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environmental Pollution 265:115001. doi:10.1016/j.envpol.2020.115001.
  • Thangagiri, B., A. Sakthivel, K. Jeyasubramanian, S. Seenivasan, J. D. Raja, and K. Yun. 2022. Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: Batch and column studies. Chemosphere 286:131598. doi:10.1016/j.chemosphere.2021.131598.
  • Uchimiya, M., L. H. Wartelle, K. T. Klasson, C. A. Fortier, and I. M. Lima. 2011. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry 59 (6):2501–10. doi:10.1021/jf104206c.
  • Wazir, A. H., I. U. Wazir, and A. M. Wazir. 2020. Preparation and characterization of rice husk based physical activated carbon. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. doi:10.1080/15567036.2020.1715512.
  • Xia, S., Z. Song, P. Jeyakumar, N. Bolan, and H. Wang. 2020. Characteristics and applications of biochar for remediating Cr (VI)-contaminated soils and wastewater. Environmental Geochemistry and Health 42 (6):1543–67. doi:10.1007/s10653-019-00445-w.
  • Xiong, Q., X. Wu, H. Lv, S. Liu, H. Hou, and X. Wu. 2021. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge. Chemosphere 280:130566. doi:10.1016/j.chemosphere.2021.130566.
  • Yang, Z. H., S. Xiong, B. Wang, Q. Li, and W. C. Yang. 2013. Cr (III) adsorption by sugarcane pulp residue and biochar. Journal of Central South University 20 (5):1319–25. doi:10.1007/s11771-013-1618-4.
  • Zhang, Y., S. Fan, T. Liu, W. Fu, and B. Li. 2022. A review of biochar prepared by microwave-assisted pyrolysis of organic wastes. Sustainable Energy Technologies and Assessments 50:101873. doi:10.1016/j.seta.2021.101873.
  • Zhou, Y. F., and R. J. Haynes. 2011. Removal of Pb (II), Cr (III) and Cr (VI) from aqueous solutions using alum-derived water treatment sludge. Water, Air, & Soil Pollution 215 (1):631–43. doi:10.1007/s11270-010-0505-y.
  • Zhou, J., H. Chen, R. W. Thring, and J. M. Arocena. 2019. Chemical pretreatment of rice straw biochar: Effect on biochar properties and hexavalent chromium adsorption. International Journal of Environmental Research 13 (1):91–105. doi:10.1007/s41742-018-0156-1.
  • Zou, H., J. Zhao, F. He, Z. Zhong, J. Huang, Y. Zheng, Y. Zhang, Y. Yang, F. Yu, M. A. Bashir, et al. 2021. Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms. Journal of Hazardous Materials 413:125252. doi:10.1016/j.jhazmat.2021.125252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.