97
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Miller cycle and exhaust gas recirculation on combustion characteristics of a gasoline direct-injection engine

, , , &
Pages 5868-5882 | Received 11 Nov 2021, Accepted 06 Jun 2022, Published online: 29 Jun 2022

References

  • Bermúdez, V., J. M. Luján, H. Climent, and D. Campos. 2015. Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions. Applied Energy 158:459–73. doi:10.1016/j.apenergy.2015.08.071.
  • Bozza, F., V. De Bellis, and L. Teodosio. 2016. Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines. Applied Energy 169:112–25. doi:10.1016/j.apenergy.2016.01.129.
  • Chen, B., L. Zhang, J. Han, and Q. Zhang. 2019. A combination of electric supercharger and Miller cycle in a gasoline engine to improve thermal efficiency without performance degradation. Case Studies in Thermal Engineering 14:100429. doi:10.1016/j.csite.2019.100429.
  • Fan, Y. D., T. B. Wu, D. Xiao, H. C. Xu, X. S. Li, and M. Xu. 2021. Effect of port water injection on the characteristics of combustion and emissions in a spark ignition direct injection engine. Fuel 283:119271. doi:10.1016/j.fuel.2020.119271.
  • Ganesan, N., T. H. Le, P. Ekambaram, D. Balasubramanian, V. V. Le, and A. T. Hoang. 2022. Experimental assessment on performance and combustion behaviors of reactivity-controlled compression ignition engine operated by n-pentanol and cottonseed biodiesel. Journal of Cleaner Production 330:129781. doi:10.1016/j.jclepro.2021.129781.
  • Gong, Z., L. Feng, and Z. Wang. 2019. Experimental and numerical study of the effect of injection strategy and intake valve lift on super-knock and engine performance in a boosted GDI engine. Fuel 249:309–25. doi:10.1016/j.fuel.2019.03.005.
  • Guan, W., V. B. Pedrozo, H. Zhao, Z. Ban, and T. Lin. 2019. Miller cycle combined with exhaust gas recirculation and post-fuel injection for emissions and exhaust gas temperature control of a heavy-duty diesel engine. International Journal of Engine Research 21 (8):1381–97. doi:10.1177/1468087419830019.
  • Hoang, A. T., S. Nižetić, H. C. Ong, W. Tarelko, V. V. Pham, T.H. Le, M.Q. Chau, and X.P. Nguyen. 2021. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments 47:101416. doi:10.1016/j.seta.2021.101416.
  • Jung, D., and S. Lee. 2018. An investigation on the potential of dedicated exhaust gas recirculation for improving thermal efficiency of stoichiometric and lean spark ignition engine operation. Applied Energy 228:1754–66. doi:10.1016/j.apenergy.2018.07.066.
  • Li, T., Y. Gao, J. Wang, and Z. Chen. 2014. The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC. Energy Conversion and Management 79:59–65. doi:10.1016/j.enconman.2013.12.022.
  • Li, T., B. Wang, and B. Zheng. 2016. A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion. Energy Conversion and Management 123:140–52. doi:10.1016/j.enconman.2016.06.038.
  • Li, Y., A. Khajepour, and C. Devaud. 2018. Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines. Applied Energy 222:199–215. doi:10.1016/j.apenergy.2018.04.012.
  • Li, C., Y. Wang, B. Jia, and A. P. Roskilly. 2019a. Application of Miller cycle with turbocharger and ethanol to reduce NOx and particulates emissions from diesel engine-A numerical approach with model validations. Applied Thermal Engineering 150:904–11. doi:10.1016/j.applthermaleng.2019.01.056.
  • Li, X., X. Zhen, Y. Wang, D. Liu, and Z. Tian. 2019b. The knock study of high compression ratio SI engine fueled with methanol in combination with different EGR rates. Fuel 257:116098. doi:10.1016/j.fuel.2019.116098.
  • Li, A., Z. Zheng, and T. Peng. 2020. Effect of water injection on the knock, combustion, and emissions of a direct injection gasoline engine. Fuel 268:117376. doi:10.1016/j.fuel.2020.117376.
  • Li, J., X. Yu, J. Xie, and W. Yang. 2020. Mitigation of high pressure rise rate by varying IVC timing and EGR rate in an RCCI engine with high premixed fuel ratio. Energy 192:116659. doi:10.1016/j.energy.2019.116659.
  • Luo, Q., and B. Sun. 2016. Effect of the Miller cycle on the performance of turbocharged hydrogen internal combustion engines. Energy Conversion and Management 123:209–17. doi:10.1016/j.enconman.2016.06.039.
  • Martins, M., and T. Lanzanova. 2015. Full-load Miller cycle with ethanol and EGR: Potential benefits and challenges. Applied Thermal Engineering 90:274–85. doi:10.1016/j.applthermaleng.2015.06.086.
  • Nayak, S. K., A. T. Hoang, S. Nižetić, X. P. Nguyen, and T. H. Le. 2022. Effects of advanced injection timing and inducted gaseous fuel on performance, combustion and emission characteristics of a diesel engine operated in dual-fuel mode. Fuel 310:122232. doi:10.1016/j.fuel.2021.122232.
  • Pan, X., Y. Zhao, D. Lou, and L. Fang. 2020. Study of the Miller cycle on a turbocharged DI gasoline engine regarding fuel economy improvement at part load. Energies 13 (6):1–26. doi:10.3390/en13061500.
  • Sens, M., S. Zwahr, and M. Günther. 2016. Potential of the variable compression ratio on a fully “millered” gasoline engine. MTZ Worldwide 77 (4):50–55. doi:10.1007/s38313-016-0010-9.
  • Shen, K., Z. Xu, H. Chen, and Z. Zhang. 2021. Investigation on the EGR effect to further improve fuel economy and emissions effect of Miller cycle turbocharged engine. Energy 215:119116. doi:10.1016/j.energy.2020.119116.
  • Tavakoli, S., S. A. Jazayeri, M. Fathi, and O. Jahanian. 2016. Miller cycle application to improve lean burn gas engine performance. Energy 109:190–200. doi:10.1016/j.energy.2016.04.102.
  • Teodosio, L., D. Pirrello, F. Berni, V. De, Bellis, R. Lanzafame, and A. D’Adamo. 2018. Impact of intake valve strategies on fuel consumption and knock tendency of a spark ignition engine. Applied Energy 216:91–104. doi:10.1016/j.apenergy.2018.02.032.
  • Wang, Y., B. Zu, Y. Xu, Z. Wang, and J. Liu. 2016. Performance analysis of a Miller cycle engine by an indirect analysis method with sparking and knock in consideration. Energy Conversion and Management 119:316–26. doi:10.1016/j.enconman.2016.03.083.
  • Wei, H., A. Shao, J. Hua, L. Zhou, and D. Feng. 2018. Effects of applying a Miller cycle with split injection on engine performance and knock resistance in a downsized gasoline engine. Fuel 214:98–107. doi:10.1016/j.fuel.2017.11.006.
  • Xu, J., T. Guo, Y. Feng, and M. Sun. 2021. Numerical investigation of Miller cycle with EIVC and LIVC on a high compression ratio gasoline engine. Science Progress 104 (2):1–17. doi:10.1177/00368504211023640.
  • Yu, Y., G. Li, Y. Wang, and J. Ding. 2016. Modeling the atomization of high-pressure fuel spray by using a new breakup model. Applied Mathematical Modelling 40 (1):268–83. doi:10.1016/j.apm.2015.04.046.
  • Zhao, L., W. Qi, X. Wang, and X. Su. 2020. Potentials of EGR and lean mixture for improving fuel consumption and reducing the emissions of high-proportion butanol-gasoline engines at light load. Fuel 266:116959. doi:10.1016/j.fuel.2019.116959.
  • Zhou, L., Y. Song, J. Hua, F. Liu, and H. Wei. 2020. Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine. Energy 206:118119. doi:10.1016/j.energy.2020.118119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.