205
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Study on fluid mobility in sandwich-type shale oil reservoir using two-dimensional nuclear magnetic resonance approaches

ORCID Icon, , , , &
Pages 5951-5967 | Received 10 Jan 2022, Accepted 20 Jun 2022, Published online: 30 Jun 2022

References

  • Afrough, A., M. S. Zamiri, L. Romero-Zerón, and B. J. Balcom. 2017. Magnetic-resonance imaging of fines migration in Berea sandstone. Spe. J 22:1–8. doi:10.2118/186089-PA.
  • Afrough, A., S. Vashaee, L. Romero Zerón, and B. Balcom. 2019. Absolute measurement of pore size based on nonground eigenstates in magnetic-resonance relaxation. Phys Rev Appl 11:–d.11.041002. doi:10.1103/PhysRevApplie.
  • Chen, F., H. Zhao, S. Lu, X. Ding, and Y. Ju. 2019. The effects of composition, laminar structure and burial depth on connected pore characteristics in a shale oil reservoir, the Raoyang Sag of the Bohai Bay Basin, China Mar. Petrol Geol 101:290–302. doi:10.1016/j.marpetgeo.2018.12.012.
  • Cui, R., Q. Feng, H. Chen, W. Zhang, and S. Wang. 2019. Multiscale random pore network modeling of oil-water two-phase slip flow in shale matrix. J Petrol Sci Eng 175:46–59. doi:10.1016/j.petrol.2018.12.026.
  • Du, Q., L. Xiao, Y. Zhang, G. Liao, H. Liu, and J. Guo. 2020. A novel two-dimensional NMR relaxometry pulse sequence for petrophysical characterization of shale at low field. J Magn Reson 310:106643. doi:10.1016/j.jmr.2019.106643.
  • Fan, Y., F. Wu, H. Li, N. Huo, Y. Wang, S. Deng, and P. Yang. 2015. A modified design of pulse sequence and inversion method for D-T2 two-dimensional NMR. Acta Phys Sin-ch Ed 64 (9):524–39. doi:10.7498/aps.64.099301.
  • Fleury, M., and M. Romero-Sarmiento. 2016. Characterization of shales using T1–T2 NMR maps. J. Petrol. Sci. Eng 137:55–62. 1.006. doi:10.1016/j.petrol.2015.1.
  • Golsanami, N., M. N. Jayasuriya, W. Yan, S. G. Fernando, X. Liu, L. Cui, X. Zhang, Q. Yasin, H. Dong, and X. Dong. 2022. Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images. Energy 240:122599. doi:10.1016/j.energy.2021.122599.
  • Gorham, J. M., J. D. Wnuk, M. Shin, and H. Fairbrother. 2007. Adsorption of natural organic matter onto carbonaceous surfaces: Atomic force microscopy study. Environ Sci Technol 41:1238–44. doi:10.1021/es061793d.
  • Hu, F., C. Zhou, C. Li, H. Xu, F. Zhou, and Z. Si. 2012. Fluid identification method based on 2D diffusion-relaxation nuclear magnetic resonance (NMR). Petrol. Explor. Dev 39:591–96. doi:10.1016/S1876-3804(12)60080-9.
  • Hu, S., W. Zhao, L. Hou, Z. Yang, R. Zhu, S. Wu, B. Bai, and X. Jin. 2020. Development potential and technical strategy of continental shale oil in China. Explor Dev 47 (4):819–28. doi:10.11698/ped.2020.04.00.
  • Jia, C., M. Zheng, and Y. Zhang. 2012. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petrol Explor Dev 39:129–36. doi:10.1016/S1876-3804(12)60026-3.
  • Jiao, F., C. Zou, and Z. Yang. 2020. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens. Explor Dev 47 (6):1067–78. doi:10.11698/ped.2020.06.01.
  • Kang, D., X. Wang, X. Zheng, and Y. Zhao. 2021. Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra. Fuel 290:120006. doi:10.1016/j.fuel.2020.120006.
  • Kazemi, M., A. Takbiri-Borujeni, J. R. Hansel, and M. Valera. 2019. Enhanced Oil Recovery of Shale Oil: A Molecular Simulation Study. 2019 presented in the Unconventional Resources Technology Conference, Denver, Colorado, USA.
  • Khatibi, S., M. Ostadhassan, Z. H. Xie, T. Gentzis, B. Bubach, Z. Gan, and H. Carvajal-Ortiz. 2019. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales. Fuel 235:167–77. doi:10.1016/j.fuel.2018.07.100.
  • Korb, J. P., B. Nicot, and I. Jolivet. 2018. Dynamics and wettability of petroleum fluids in shale oil probed by 2D T1-T2and fast field cycling NMR relaxation. Micropor. Mesopor. Mat 269:7–11. doi:10.1016/j.micromeso.2017.05.055.
  • Li, T., Z. Jiang, C. Xu, B. Liu, G. Liu, P. Wang, X. Liu, W. Chen, C. Ning, and Z. Wang. 2017. Effect of pore structure on shale oil accumulation in the lower third member of the Shahejie formation, Zhanhua Sag, eastern China: Evidence from gas adsorption and nuclear magnetic resonance. Mar Petrol Geol 89:932–49. doi:10.1016/j.marpetgeo.2017.09.030.
  • Li, T., Z. Huang, Y. Feng, X. Chen, Q. Ma, B. Liu, and X. Guo. 2020a. Reservoir characteristics and evaluation of fluid mobility in organic-rich mixed siliciclastic-carbonate sediments: A case study of the lacustrine Qiketai Formation in Shengbei Sag, Turpan-Hami Basin, Northwest China. J. Petrol Sci Eng 185:106667. doi:10.1016/j.petrol.2019.106667.
  • Li, X., J. Cai, H. Liu, X. Zhu, Z. Li, and J. Liu. 2020b. Characterization of shale pore structure by successive pretreatments and its significance. Fuel 269:117412. doi:10.1016/j.fuel.2020.117412.
  • Liang, C., L. Xiao, C. Zhou, L. Guo, F. Hu, G. Liao, X. Song, and G. Ge. 2019. nuclear magnetic resonance characterizes rock wettability: Preliminary experimental results. Chinese J Geophys-ch 62 (11):4472–81. doi:10.6038/cjg2019M0266.
  • Liu, Z., D. Liu, Y. Cai, Y. Yao, Z. Pan, and Y. Zhou. 2020. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review. Int J Coal Geol 218:103261. 2019.103261. doi:10.1016/j.coal.
  • Lu, S., J. Li, P. Zhang, H. Xue, G. Wang, J. Zhang, H. Liu, and Z. Li. 2018. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs. Petrol Explor Dev 45 (3):452–60. doi:10.1016/S1876-3804(18)30050-8.
  • Ma, X., H. Wang, S. Zhou, Z. Feng, H. Liu, and W. Guo. 2020a. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation. J. Nat. Gas. Sci. Eng 84:103674. doi:10.1016/j.jngse.2020.103674.
  • Ma, Y., H. Wang, W. Wang, S. Zhou, Y. Ding, J. Pan, D. Fu, and J. Li. 2020b. The application of nuclear magnetic resonance T1-T2 maps in the research of sedimentary organic matter: A case study of early mature shale with type I kerogen. J Petrol Sci Eng 194:107447. doi:10.1016/j.petrol.2020.107447.
  • Newgord, C., S. Tandon, and Z. Heidari. 2020. Simultaneous assessment of wettability and water saturation using 2D NMR measurements. Fuel 270:117431. doi:10.1016/j.fuel.2020.117431.
  • Singer, P. M., Z. Chen, X. Wang, and G. J. Hirasaki. 2020. Diffusive coupling in heptane-saturated kerogen isolates evidenced by NMR T1-T2and T2-T2 maps. Fuel 280:118626. doi:10.1016/j.fuel.2020.118626.
  • Song, Y., and R. Kausik. 2019. NMR application in unconventional shale reservoirs – A new porous media research frontier. Prog Nucl Mag Res Sp 112-113:17–33. doi:10.1016/j.pnmrs.2019.03.002.
  • Song, M., H. Liu, Y. Wang, and Y. Liu. 2020a. Enrichment rules and exploration practices of paleogene shale oil in jiyang depression, bohai bay basin, China. Explor Dev 47 (2):225–35. doi:10.11698/ped.2020.02.02.
  • Song, S., M. Liu, Y. Wang, and Y. Liu. 2020b. Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China Petrol. Explor Develop 47 (2):242–53. doi:10.1016/S1876-3804(20)60043-X.
  • Wang, X., D. Huang, B. Cheng, and L. Wang. 2018. New insight into the adsorption behaviour of effluent organic matter on organic –inorganic ultrafiltration membranes: a combined QCM – D and AFM study. Roy Soc Open Sci 5:180586. doi:10.1098/rsos.180586.
  • Xiong, Q., K. Li, D. Yang, H. Yu, Z. Pan, and Y. Song. 2020. Characterizing coal pore space by gas adsorption, mercury intrusion, FIB–SEM and µ‑CT. Environ. Earth Sci 79:209. doi:10.1007/s12665-020-08950-3.
  • Yan, W., F. Sun, J. Sun, and N. Golsanami. 2021. Distribution model of fluid components and quantitative calculation of movable oil in inter-salt shale using 2D NMR. Energies 14:2447. doi:10.3390/en14092447.
  • Yang, Z., L. Hou, S. Tao, J. Cui, S. Lin, and S. Pan. 2015. Formation conditions and “sweet spot” evaluation of tight oil and shale oil. Explor Dev 42 (5):555–65. doi:10.11698/ped.2015.05.02.
  • Yang, Z., and C. Zou. 2019. “Exploring petroleum inside source kitchen”: connotation and prospects of source rock oil and gas. Petrol. Explor. Dev 46:173–84. doi:10.11698/ped.2019.01.18.
  • Yang, K., P. R. J. Connolly, M. Li, S. J. Seltzer, D. K. McCarty, M. Mahmoud, A. El-Husseiny, E. F. May, and M. L. Johns. 2020. Shale rock core analysis using NMR: Effect of bitumen and water content. J Petrol Sci Eng 195:107847. doi:10.1016/j.petrol.2020.107847.
  • Zamiri, M. S., B. MacMillan, F. Marica, J. Guo, L. Romero-Zerón, and B. J. Balcom. 2021. Petrophysical and geochemical evaluation of shales using magnetic resonance T1-T2 relaxation correlation. Fuel 284:119014. doi:10.1016/j.fuel.2020.119014.
  • Zhang, W., Q. Feng, S. Wang, and X. Xing. 2019. Oil diffusion in shale nanopores: Insight of molecular dynamics simulation. J Mol Liq 290:111183. doi:10.1016/j.molliq.2019.111183.
  • Zhang, Y., L. Xiao, and G. Liao. 2019. Accelerated 2D LAplace NMR of porous media with compressed sensing at low SNR. Micropor Mesopor Mat 290:109666. doi:10.1016/j.micromeso.2019.109666.
  • Zhang, P., S. Lu, J. Li, and X. Chang. 2020. 1D and 2D nuclear magnetic resonance (NMR) relaxation behaviors of protons in clay, kerogen and oil-bearing shale rocks. Mar Petrol Geol 114:104210. 2019.104210. doi:10.1016/j.marpetgeo.
  • Zhang, S., Y. Li, and H. Pu. 2020. Studies of the storage and transport of water and oil in organic-rich shale using vacuum imbibition method. Fuel 266:117096. doi:10.1016/j.fuel.2020.117096.
  • Zhao, W., S. Hu, L. Hou, T. Yang, X. Li, B. Guo, and Z. Yang. 2020. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petrol Explor Dev 47:1–10. doi:10.11698/ped.2020.01.01.
  • Zhou, G., Z. Gu, Z. Hu, J. Chang, X. Duan, X. Liu, Y. Li, and H. Zhan. 2020. Characterization and interpretation of organic matter, clay minerals, and gas shale rocks with low-field NMR. J Petrol Sci Eng 195:107926. doi:10.1016/j.petrol.2020.107926.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.