247
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Three-dimensional analysis of heat transfer and entropy production of jet impingement hybrid nanofluid cooling a porous media-filled heat sink

ORCID Icon &
Pages 6035-6062 | Received 03 Nov 2021, Accepted 15 Jun 2022, Published online: 30 Jun 2022

References

  • Ahmed, H. E., B. H. Salman, A. S. Kherbeet, and M. I. Ahmed. 2018. Optimisation of thermal design of heat sinks: A review. International Journal of Heat and Mass Transfer 118:129–53. doi:10.1016/j.ijheatmasstransfer.2017.10.099.
  • Albojamal, A., and K. Vafai. 2020. Analysis of particle deposition of nanofluid flow through porous media. International Journal of Heat and Mass Transfer 161:120227. doi:10.1016/j.ijheatmasstransfer.2020.120227.
  • Amano, R. S., and B. Sunden. 2016. Impingement jet cooling in gas turbines, Vol. 2014. Ashurst Lodge near Southampton in the UK: WIT Press.
  • Ambreen, T., A. Saleem, and C. W. Park. 2022. Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy-Forchheimer-Brinkman model coupled with multiphase Eulerian model. Applied Thermal Engineering 173:115231. doi:10.1016/j.applthermaleng.2020.115231.
  • Anki Reddy, P. B., T. Salah, S. Jakeer, M. A. Mansour, and A. M. Rashad. 2022. Entropy generation due to magneto- natural convection in a square enclosure with heated corners saturated porous medium using Cu/ water nanofluid. Physics 77:1863–84. doi:10.1016/j.cjph.2022.01.012.
  • ANSYS fluent theory guide, ANSYS, Inc., 2600 ANSYS Drive Canonsburg, PA 15317, January 2014.
  • Arnab, M., R. Swetapadma, and K. B. Ashok. 2018. Heat transfer and entropy generation analysis of a protruded surface in presence of a cross–flow jet using Al2O3–water nanofluid. Thermal Science and Engineering Progress 5:327–38. doi:10.1016/j.tsep.2018.01.001.
  • Astanina, M. S., M. M. Rashidi, M. A. Sheremet, and G. Lorenzini. 2020. Cooling system with porous finned heat sink for heat generating element. Transport in Porous Media 133:459–78. doi:10.1007/s11242-020-01433-w.
  • Bayomy, A., and M. Saghir. 2017. Experimental study of using γ-Al2O3 – Water nanofluid flow through aluminum foam heat sink: Comparison with numerical approach. International Journal of Heat and Mass Transfer 107:181–203. doi:10.1016/j.ijheatmasstransfer.2016.11.037.
  • Bezaatpour, M., and M. Goharkhah. 2019. Three dimensional simulation of hydrodynamic and heat transfer behavior of magnetite nanofluid flow in circular and rectangular channel heat sinks filled with porous media. Powder Technology 344:68–78. doi:10.1016/j.powtec.2018.11.104.
  • Bhowmick, D., P. R. Randive, and S. Pat. 2021. Implication of corrugation profile on thermo-hydraulic characteristics of Cu-water nanofluid flow through partially filled porous channel. International Communications in Heat and Mass Transfer 125:105329. doi:10.1016/j.icheatmasstransfer.2021.105329.
  • Boudraa, B., and R. Bessaїh. 2020. Three‐dimensional turbulent forced convection around a hot cubic block exposed to a cross‐flow and an impinging jet. Heat Transfer 50 (1):1–19. doi:10.1002/htj.21883.
  • Boudraa, B., and R. Bessaïh. 2021. Numerical investigation of jet impingement cooling an isothermal surface using extended jet holes with various binary hybrid nanofluids. International Communications in Heat and Mass Transfer 127:105560. doi:10.1016/j.icheatmasstransfer.2021.105560.
  • Boudraa, B., and R. Bessaih. 2021. Turbulent forced convection and entropy generation of impinging jets of waterAl2O3 nanofluid on heated blocks. Journal of Applied and Computational Mechanics 7 (4):2010–23. doi:10.22055/JACM.2020.35216.2599.
  • Boudraa, B., and R. Bessaih. 2022. Numerical investigations of heat transfer around a hot block subject to a cross-flow and an extended jet hole using ternary hybrid nanofluids. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236 (8):4412–28. doi:10.1177/09544062211049872.
  • Buonomo, B., O. Manca, S. Nappo, and S. Nardini. 2018. Numerical investigation on laminar slot-jet impinging on a surface at uniform heat flux in a channel partially filled with a porous medium. Energy Procedia 148:790–97. doi:10.1016/j.egypro.2018.08.131.
  • Chinige, S. K., M. Satheshkumar, G. Martin, and P. Arvind. 2017. Numerical investigations on convective heat transfer enhancement in jet impingement due to the presence of porous media using Cascaded Lattice Boltzmann method. International Journal of Thermal Sciences 122:201–17. doi:10.1016/j.ijthermalsci.2017.08.020.
  • Corcione, M. 2011. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Conversion and Management 52 (1):789–93. doi:10.1016/j.enconman.2010.06.072.
  • Dutta, S., and P. Singh. 2021. Opportunities in jet-impingement cooling for gas-turbine engines. Energies 14 (20):6587. doi:10.3390/en14206587.
  • Farahani, S. D., M. Alibeigi, A. Zakinia, and M. Goodarzi. 2021. The effect of microchannel-porous media and nanofluid on temperature and performance of CPV system. Journal of Thermal Analysis and Calorimetry. doi:10.1007/s10973-021-11087-5.
  • Farahani, S. D., A. D. Farahani, and E. Hajian. 2021. Effect of PCM and porous media/nanofluid on the thermal efficiency of microchannel heat sinks. International Communications in Heat and Mass Transfer 127:105546. doi:10.1016/j.icheatmasstransfer.2021.105546.
  • Gong, L., Y. Li, Z. Bai, and M. Xu. 2018. Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design. Applied Thermal Engineering 137:288–95. doi:10.1016/j.applthermaleng.2018.03.065.
  • Hatami, M., and D. Ganji. 2014. Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method. Energy Conversion and Management 78:347–58. doi:10.1016/j.enconman.2013.10.063.
  • Izadi, A., M. Siavashi, and Q. Xiong. 2019. Impingement jet hydrogen, air and Cu-H2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. International Journal of Hydrogen Energy 44 (30):15933–48. doi:10.1016/j.ijhydene.2018.12.176.
  • Izadia, A., M. Siavashia, H. Rasama, and Q. Xiongb. 2020. MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling. Applied Thermal Engineering 168:114843. doi:10.1016/j.applthermaleng.2019.114843.
  • Jiang, Y., X. Zhou, and Y. Wang. 2019. Effect of nanoparticle shapes on nanofluid mixed forced and thermocapillary convection in minichannel. International Communications in Heat and Mass Transfer 118:104884. doi:10.1016/j.icheatmasstransfer.2020.104884.
  • Lori, M. S., and K. Vafai. 2022. Heat transfer and fluid flow analysis of microchannel heat sinks with periodic vertical porous ribs. Applied Thermal Engineering 205:118059. doi:10.1016/j.applthermaleng.2022.118059.
  • Ming, P., C. Li, J. Wentao, and T. Wenquan. 2020. Numerical study on flow and heat transfer in a multi-jet microchannel heat sink. International Journal of Heat and Mass Transfer 157:119982. doi:10.1016/j.ijheatmasstransfer.2020.119982.
  • Neyestani, M., M. Nazari, M. M. Shahmardan, M. Sharifpur, M. Ashouri, and J. P. Meyer. 2019. Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids. Journal of Thermal Analysis and Calorimetry 138 (7):805–17. doi:10.1007/s10973-019-08256-y.
  • Rahimi-Gorji, M., O. Pourmehran, M. Hatami, and D. D. Ganji. 2015. Statistical optimisation of microchannel heat sink (MCHS) geometry cooled by different nanofluids using RSM analysis. The European Physical Journal Plus 130:1–21. doi:10.1140/epjp/i2015-15022-8.
  • Rashad, A. M., A. J. Chamkha, M. A. Ismael, and T. Salah. 2018. Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localised heating from below and internal heat generation. Journal of Heat Transfer 140 (7):072502. doi:10.1115/1.4039213.
  • Salimi, M. R., M. Taeibi-Rahni, and H. Rostamzadeh. 2020. Heat transfer and entropy generation analysis in a three- dimensional impinging jet porous heat sink under local thermal non-equilibrium condition. International Journal of Thermal Sciences 153:106348. doi:10.1016/j.ijthermalsci.2020.106348.
  • Samudre, P., and S. V. Kailas. 2022. Thermal performance enhancement in open-pore metal foam and foam-fin heat sinks for electronics cooling. Applied Thermal Engineering 205:117885. doi:10.1016/j.applthermaleng.2021.117885.
  • Shah, Z., M. Sheikholeslami, and P. Kumam. 2021. Simulation of entropy optimisation and thermal behavior of nanofluid through the porous media. International Communications in Heat and Mass Transfer 120:105039. doi:10.1016/j.icheatmasstransfer.2020.105039.
  • Shahsavar, A., M. Rashidi, Ç. Yıldız, and M. Arıcı. 2021. Natural convection and entropy generation of Ag-water nanofluid in a finned horizontal annulus: A particular focus on the impact of fin number. International Communications in Heat and Mass Transfer 125:105349. doi:10.1016/j.icheatmasstransfer.2021.105349.
  • Shahsavar, A., P. Farhadi, Ç. Yıldız, M. Moradi, and M. Arıcı. 2022. Evaluation of entropy generation characteristics of boehmite - alumina nanofluid with different shapes of nanoparticles in a helical heat sink. International Journal of Mechanical Sciences 225:107338. doi:10.1016/j.ijmecsci.2022.107338.
  • Siavashi, M., H. Rasam, and A. Izadi. 2019. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. Journal of Thermal Analysis and Calorimetry 135:1399–415. doi:10.1007/s10973-018-7540-0.
  • Sun, B., Y. Zhang, D. Yang, and H. Li. 2019. Experimental study on heat transfer characteristics of hybrid nanofluid impinging jets. Applied Thermal Engineering 151:556–66. doi:10.1016/j.applthermaleng.2019.01.111.
  • Tahmasebiboldaji, M., M. Afrand, A. A. Barzinjy, S. M. Hamad, and P. Talebizadehsardari. 2019. Forced convection around horizontal tubes bundles of a heat exchanger using a two-phase mixture model: Effects of nanofluid and tubes configuration. International Journal of Mechanical Sciences 161–162:105056. doi:10.1016/j.ijmecsci.2019.105056.
  • Tang, Z., F. Deng, Z. Zhao, J. Cheng, and Q. Wang. 2022. Study of flow and heat transfer characteristics of a liquid jet impinging on a heat sink with discontinuous staggered ring ribs. International Journal of Heat and Mass Transfer 190:122757. doi:10.1016/j.ijheatmasstransfer.2022.122757.
  • Tehmina, A., A. Saleem, and W. P. Cheol. 2020. Analysis of hydro-thermal and entropy generation characteristics of nanofluid in an aluminium foam heat sink by employing Darcy Forchheimer-Brinkman model coupled with multiphase Eulerian model. Applied Thermal Engineering 173:115231. doi:10.1016/j.applthermaleng.2020.115231.
  • Vincenzo, B., B. Buonomo, A. D. Pasqua, and O. Manca. 2021. Heat transfer enhancement of laminar impinging slot jets by nanofluids and metal foams. Thermal Science and Engineering Progress 22:100860. doi:10.1016/j.tsep.2021.100860.
  • Waehayee, M., K. Yeranee, W. Suksuwan, S. Saeung, and C. Nuntadusit. 2020. Heat transfer enhancement in rotary drum dryer by incorporating jet impingement to accelerate drying rate. Drying Technology 39 (10):1314–24. doi:10.1080/07373937.2020.1742150.
  • Wang, J., H. Kong, Y. Xu, and J. Wu. 2019. Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling. Applied Energy 241:433–43. doi:10.1016/j.apenergy.2019.03.040.
  • Wang, T., H.C. Wu, J.H. Meng, and W.M. Yan. 2020. Optimization of a double-layered microchannel heat sink with semi-porous-ribs by multi-objective genetic algorithm. International Journal of Heat and Mass Transfer 149 : 119217. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119217.
  • Wang, J., Y. P. Xu, R. Qahiti, M. Jafaryar, M. A. Alazwari, N. H. Abu-Hamdeh, A. Issakhov, and M. M. Selim. 2021. Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analysing CPU stability. Journal of Petroleum Science and Engineering 208:109734. doi:10.1016/j.petrol.2021.109734.
  • Yongtong, L., G. Liang, X. Minghai, and J. Yogendra. 2020. Hydraulic and thermal performances of metal foam and pin fin hybrid heat sink. Applied Thermal Engineering 166:114665. doi:10.1016/j.applthermaleng.2019.114665.
  • Zargartalebi, M., and J. Azaiez. 2018. Heat transfer analysis of nanofluid based microchannel heat sink. International Journal of Heat and Mass Transfer 324:1233–42. doi:10.1016/j.ijheatmasstransfer.2018.07.152.
  • Zhai, Y., P. Yao, X. Shen, and H. Wang. 2022. Thermodynamic evaluation and particle migration of hybrid nanofluids flowing through a complex microchannel with porous fins. International Communications in Heat and Mass Transfer 135:106118. doi:10.1016/j.icheatmasstransfer.2022.106118.
  • Zhang, Y., E. Long, and M. Zhang. 2018. Experimental study on heat sink with porous copper as conductive material for CPU cooling. Materials Today: Proceedings, Garden Cliff Resort & Spa, Chonburi, Thailand 5: 15004–09. doi: 10.1016/j.matpr.2018.04.046.
  • Zhong, J. F., S. N. Sedeh B, Y. P. Lv, B. Arzani, and D. Toghraie. 2021. Investigation of Ferro-nanofluid flow within a porous ribbed microchannel heat sink using single-phase and two-phase approaches in the presence of constant magnetic field. Powder Technology 387:251–60. doi:10.1016/j.powtec.2021.04.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.