232
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Biodiesel Production from Sapindus Trifoliatus oil using Mg doped CaO Heterogeneous Nanocatalyst

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6099-6110 | Received 20 Jan 2022, Accepted 23 Jun 2022, Published online: 03 Jul 2022

References

  • Acosta, P. I., R. R. Campedelli, E. L. Correa, H. A. G. Bazani, E. N. Nishida, B. S. Souza, and J. R. Mora. 2020. Efficient production of biodiesel by using a highly active calcium oxide prepared in presence of pectin as heterogeneous catalyst. Fuel 271. doi:10.1016/j.fuel.2020.117651.
  • Balaganesh, A. S., R. Sengodan, R. Ranjithkumar, and C. B. 2018. Synthesis and characterization of porous calcium oxide nanoparticles (CaO NPS). International Journal of Innovative Technology and Exploring Engineering 8 (2):312–14.
  • Baskar, G., and R. Aiswarya. 2016. Trends in catalytic production of biodiesel from various feedstocks. Renewable and Sustainable Energy Reviews 57:496–504. doi:10.1016/j.rser.2015.12.101.
  • Blanton, T. N., and C. L. Barnes. 2005. Quantitative analysis of calcium oxide desiccant conversion to calcium hydroxide using X-ray diffraction.
  • Cholapandian, K., B. Gurunathan, and N. Rajendran. 2022. Investigation of CaO nanocatalyst synthesized from Acalypha indica leaves and its application in biodiesel production using waste cooking oil. Fuel 312:122958. doi:10.1016/j.fuel.2021.122958.
  • Dai, Y. M., J. S. Wu, C. C. Chen, and K. T. Chen. 2015. Evaluating the optimum operating parameters on transesterification reaction for biodiesel production over a LiAlO2 catalyst. Chemical Engineering Journal 280:370–76. doi:10.1016/j.cej.2015.06.045.
  • Du, L., S. Ding, Z. Li, E. Lv, J. Lu, and J. Ding. 2018. Transesterification of castor oil to biodiesel using NaY zeolite-supported La2O3 catalysts. Energy Conversion and Management 173:728–34. doi:10.1016/j.enconman.2018.07.053.
  • Falowo, O. A., M. I. Oloko-Oba, and E. Betiku. 2019. Biodiesel production intensification via microwave irradiation-assisted transesterification of oil blend using nanoparticles from elephant-ear tree pod husk as a base heterogeneous catalyst. Chemical Engineering and Processing - Process Intensification 140:157–70. doi:10.1016/j.cep.2019.04.010.
  • Foroutan, R., R. Mohammadi, H. Esmaeili, F. Mirzaee Bektashi, and S. Tamjidi. 2020. Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Management 105:373–83. doi:10.1016/j.wasman.2020.02.032.
  • Gaurav, N., S. Sivasankari, G. S. Kiran, A. Ninawe, and J. Selvin. 2017. Utilization of bioresources for sustainable biofuels: A review. In Renewable and sustainable energy reviews, Vol. 73., 205–14. United Kingdom: Elsevier Ltd. doi:10.1016/j.rser.2017.01.070.
  • Hameed, B. H., L. F. Lai, and L. H. Chin. 2009. Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst: An optimized process. Fuel Processing Technology 90 (4):606–10. doi:10.1016/j.fuproc.2008.12.014.
  • Hoang, A. T., S. Nizetic, H. C. Ong, C. T. Chong, A. E. Atabani, and V. V. Pham. 2021a. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Journal of Environmental Management 296 (June):113194. doi:10.1016/j.jenvman.2021.113194.
  • Hoang, A. T., H. C. Ong, I. M. R. Fattah, C. T. Chong, C. K. Cheng, R. Sakthivel, and Y. S. Ok. 2021b. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. In Fuel processing technology 106997 , Vol. 223. Netherlands: Elsevier B.V 03783820 . doi:10.1016/j.fuproc.2021.106997.
  • Hoang, A. T., M. Tabatabaei, M. Aghbashlo, A. P. Carlucci, A. I. Ölçer, A. T. Le, and A. Ghassemi. 2021c. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renewable and Sustainable Energy Reviews 135 (October 2019):110204. doi:10.1016/j.rser.2020.110204.
  • Ideris, F., A. H. Shamsuddin, S. Nomanbhay, F. Kusumo, A. S. Silitonga, M. Y. Ong, H. C. Ong, and T. M. I. Mahlia. 2021. Optimization of ultrasound-assisted oil extraction from Canarium odontophyllum kernel as a novel biodiesel feedstock. Journal of Cleaner Production 288:125563. doi:10.1016/j.jclepro.2020.125563.
  • Marso, T. M. M., C. S. Kalpage, and M. Y. Udugala-Ganehenege. 2017. Metal modified graphene oxide composite catalyst for the production of biodiesel via pre-esterification of Calophyllum inophyllum oil. Fuel 199:47–64. doi:10.1016/j.fuel.2017.01.004.
  • Naveenkumar, R., and G. Baskar. 2019. Biodiesel production from Calophyllum inophyllum oil using zinc doped calcium oxide (Plaster of Paris) nanocatalyst. Bioresource Technology 280. doi:10.1016/j.biortech.2019.02.078.
  • Naveenkumar, R., and G. Baskar. 2020. Optimization and techno-economic analysis of biodiesel production from Calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresource Technology 315:123852. doi:10.1016/j.biortech.2020.123852.
  • Naveenkumar, R., and G. Baskar. 2021. Process optimization, green chemistry balance and technoeconomic analysis of biodiesel production from castor oil using heterogeneous nanocatalyst. Bioresource Technology 320. doi:10.1016/j.biortech.2020.124347.
  • Ngamcharussrivichai, C., W. Meechan, A. Ketcong, K. Kangwansaichon, and S. Butnark. 2011. Preparation of heterogeneous catalysts from limestone for transesterification of vegetable oils-Effects of binder addition. Journal of Industrial and Engineering Chemistry 17 (3):587–95. doi:10.1016/j.jiec.2011.05.001.
  • Niju, S., J. Indhumathi, K. M. M. S. Begum, and N. Anantharaman. 2017. Tellina tenuis: A highly active environmentally benign catalyst for the transesterification process. Biofuels 8 (5):565–70. doi:10.1080/17597269.2016.1236006.
  • Noreen, S., K. Khalid, M. Iqbal, H. B. Baghdadi, N. Nisar, U. H. Siddiqua, J. Nisar, Y. Slimani, M. I. Khan, and A. Nazir. 2021. Eco-benign approach to produce biodiesel from neem oil using heterogeneous nano-catalysts and process optimization. Environmental Technology and Innovation 22:101430. doi:10.1016/j.eti.2021.101430.
  • Rajendran, N., and B. Gurunathan. 2021. Optimization and technoeconomic analysis of biooil extraction from Calophyllum inophyllum L. seeds by ultrasonic assisted solvent oil extraction. Industrial Crops and Products 162:113273. doi:10.1016/j.indcrop.2021.113273.
  • Rajendran, N., B. Gurunathan, J. Han, S. Krishna, A. Ananth, K. Venugopal, and R. B. Sherly Priyanka. 2021. Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis. Bioresource Technology 337:125498. doi:10.1016/j.biortech.2021.125498.
  • Tan, Y. H., M. O. Abdullah, J. Kansedo, N. M. Mubarak, Y. S. Chan, and C. Nolasco-Hipolito. 2019. Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy 139:696–706. doi:10.1016/j.renene.2019.02.110.
  • Tuan Hoang, A., and V. Viet Pham. 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable and Sustainable Energy Reviews 148 (June):111265. doi:10.1016/j.rser.2021.111265.
  • Wang, S., R. Shan, Y. Wang, L. Lu, and H. Yuan. 2019. Synthesis of calcium materials in biochar matrix as a highly stable catalyst for biodiesel production. Renewable Energy 130:41–49. doi:10.1016/j.renene.2018.06.047.
  • Xie, W., and F. Wan. 2018. Basic ionic liquid functionalized magnetically responsive Fe3O4@HKUST-1 composites used for biodiesel production. Fuel 220 (September 2017):248–56. doi:10.1016/j.fuel.2018.02.014.
  • Xie, W., and F. Wan. 2019. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chemical Engineering Journal 365 (August 2018):40–50. doi:10.1016/j.cej.2019.02.016.
  • Zakir Hossain, S. M., N. Sultana, M. F. Irfan, S. M. Haque, N. Nasr, and S. A. Razzak. 2022. Artificial intelligence‐based super learner approach for prediction and optimization of biodiesel synthesis—A case of waste utilization. International Journal of Energy Research. doi:10.1002/er.7764.
  • Zhu, Z., Y. Liu, W. Cong, X. Zhao, J. Janaun, T. Wei, and Z. Fang. 2021. Soybean biodiesel production using synergistic CaO/Ag nano catalyst: Process optimization, kinetic study, and economic evaluation. Industrial Crops and Products 166 (666):113479. doi:10.1016/j.indcrop.2021.113479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.