209
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Grey wolf optimization and differential evolution-based maximum power point tracking controller for photovoltaic systems under partial shading conditions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6286-6302 | Received 22 Nov 2021, Accepted 15 Jun 2022, Published online: 10 Jul 2022

References

  • Ahmed, J., and Z. Salam. 2014. A maximum power point tracking (MPPT) for PV system using cuckoo search with partial shading capability. Applied Energy 119:118–30. doi:10.1016/j.apenergy.2013.12.062.
  • Ahmed, A., T. Ge, J. Peng, W.-C. Yan, B. T. Tee, and S. You. 2022. Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings 256:111755. doi:10.1016/j.enbuild.2021.111755.
  • Al-wesabi, I., F. Zhijian, Ameur, K, Min, D, M. B. Shafik, and G. Al-Muthanna, and . 2021. Comparative study of solar pv system performance under partial shaded condition utilizing different control approaches. Indian Journal of Science and Technology 14(22):1864–1893. https://doi.org/10.17485/IJST/v14i22.827
  • Alam, D. F., D. A. Yousri, and M. B. Eteiba. 2015. Flower pollination algorithm based solar PV parameter estimation. Energy Conversion and Management 101:410–22. doi:10.1016/j.enconman.2015.05.074.
  • Almonacid, F., C. Rus, L. Hontoria, and F. J. Munoz. 2010. Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods. Renewable Energy 35 (5):973–80. doi:10.1016/j.renene.2009.11.018.
  • Bakar Siddique, M. A., A. Asad, R. M. Asif, A. U. Rehman, M. T. Sadiq, and I. Ullah. 2021. Implementation of incremental conductance MPPT algorithm with integral regulator by using boost converter in grid-connected PV array. IETE Journal of Research 1–14. doi:10.1080/03772063.2021.1920481.
  • Cherukuri, S. K., and S. R. Rayapudi. 2017. Enhanced grey wolf optimizer based MPPT algorithm of PV system under partial shaded condition. International Journal of Renewable Energy Development 6 (3):203. doi:10.14710/ijred.6.3.203-212.
  • da Rocha, M. V., L. P. Sampaio, and S. A. O. da Silva. 2020. Comparative analysis of MPPT algorithms based on Bat algorithm for PV systems under partial shading condition. Sustainable Energy Technologies and Assessments 40:100761. doi:10.1016/j.seta.2020.100761.
  • Dhiman, G., and V. Kumar. 2019. Spotted hyena optimizer for solving complex and non-linear constrained engineering problems. In Harmony search and nature inspired optimization algorithms, 857–67. Part of the Advances in Intelligent Systems and Computing book series,Singapore: Springer.
  • Fares, D., M. Fathi, I. Shams, and S. Mekhilef. 2021. A novel global MPPT technique based on squirrel search algorithm for PV module under partial shading conditions. Energy Conversion and Management 230:113773. doi:10.1016/j.enconman.2020.113773.
  • Farzaneh, J., R. Keypour, and M. A. Khanesar. 2018. A new maximum power point tracking based on modified firefly algorithm for PV system under partial shading conditions. Technology and Economics of Smart Grids and Sustainable Energy 3 (1):1–13. doi:10.1007/s40866-018-0048-7.
  • Garud, K. S., S. Jayaraj, and M. Lee. 2021. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. International Journal of Energy Research 45 (1):6–35. doi:10.1002/er.5608.
  • Guo, L., Z. Meng, Y. Sun, and L. Wang. 2018. A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition. Energy 144:501–14. doi:10.1016/j.energy.2017.12.059.
  • Islami, M. S., T. Urmee, and I. N. S. Kumara. 2021. Developing a framework to increase solar photovoltaic microgrid penetration in the tropical region: A case study in Indonesia. Sustainable Energy Technologies and Assessments 47:101311. doi:10.1016/j.seta.2021.101311.
  • Kaced, K., C. Larbes, N. Ramzan, M. Bounabi, and Z. Elabadine Dahmane. 2017. Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Solar Energy 158:490–503. doi:10.1016/j.solener.2017.09.063.
  • Kamran, M., M. Mudassar, M. R. Fazal, M. U. Asghar, M. Bilal, and R. Asghar. 2020. Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system. Journal of King Saud University - Science 32 (7):432–41.
  • Khan, M. J., and L. Mathew. 2019. Fuzzy logic controller-based MPPT for hybrid photo-voltaic/wind/fuel cell power system. Neural Computing and Applications 31 (10):6331–44. doi:10.1007/s00521-018-3456-7.
  • Kraiem, H., F. Aymen, L. Yahya, A. Triviño, M. Alharthi, and S. S. M. Ghoneim. 2021. A comparison between particle swarm and grey wolf optimization algorithms for improving the battery autonomy in a photovoltaic system. Applied Sciences 11 (16):7732. doi:10.3390/app11167732.
  • Kumar, C., T. D. Raj, M. Premkumar, and T. D. Raj. 2020a. A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters. Optik (Stuttg) 223:165277. doi:10.1016/j.ijleo.2020.165277.
  • Kumar, N., S. Nema, R. K. Nema, and D. Verma. 2020b. A state‐of‐the‐art review on conventional, soft computing, and hybrid techniques for shading mitigation in photovoltaic applications. International Transactions on Electrical Energy Systems 30 (9):e12420. doi:10.1002/2050-7038.12420.
  • Lappalainen, K., and S. Valkealahti. 2020. Number of maximum power points in photovoltaic arrays during partial shading events by clouds. Renewable Energy 152:812–22. doi:10.1016/j.renene.2020.01.119.
  • Li, G., Y. Jin, M. W. Akram, X. Chen, and J. Ji. 2018. Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions–A review. Renewable and Sustainable Energy Reviews 81:840–73. doi:10.1016/j.rser.2017.08.034.
  • Liu, Y.-H., J.-H. Chen, and J.-W. Huang. 2015. A review of maximum power point tracking techniques for use in partially shaded conditions. Renewable and Sustainable Energy Reviews 41:436–53. doi:10.1016/j.rser.2014.08.038.
  • Lo Brano, V., and G. Ciulla. 2013. An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data. Applied Energy 111:894–903. doi:10.1016/j.apenergy.2013.06.046.
  • Lodhi, E., F.Y. Wang, G. Xiong, G. A. Mallah, M. Y. Javed, T. S. Tamir , and Gao, D.W. 2021. A dragonfly optimization algorithm for extracting maximum power of grid-interfaced PV systems. Sustainability. 13(19):10778. doi:10.3390/su131910778.
  • Meenakshi Sundaram, B., B. V. Manikandan, B. Praveen Kumar, and D. Prince Winston. 2019. Combination of novel converter topology and improved MPPT algorithm for harnessing maximum power from grid connected solar PV systems. Journal of Electrical Engineering & Technology 14 (2):733–46. doi:10.1007/s42835-018-00075-9.
  • Mohamed, M. A., A. A. Z. Diab, and H. Rezk. 2019. Partial shading mitigation of PV systems via different meta-heuristic techniques. Renewable Energy 130:1159–75. doi:10.1016/j.renene.2018.08.077.
  • Mohanty, S., B. Subudhi, and P. K. Ray. 2016. A grey wolf-assisted perturb & observe MPPT algorithm for a PV system. IEEE Transactions on Energy Conversion 32 (1):340–47. doi:10.1109/TEC.2016.2633722.
  • Owusu-Nyarko, I., M. A. Elgenedy, and K. Ahmed, “Combined temperature and irradiation effects on the open circuit voltage and short circuit current constants for enhancing their related pv-mppt algorithms,” in 2019 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Aswan, Egypt, 2019, pp. 343–48.
  • Patro, S. K., and R. P. Saini. 2020. Mathematical modeling framework of a PV model using novel differential evolution algorithm. Solar Energy 211:210–26. doi:10.1016/j.solener.2020.09.065.
  • Pilakkat, D., and S. Kanthalakshmi. 2019. An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Solar Energy 178:37–47. doi:10.1016/j.solener.2018.12.008.
  • Prince Winston, D., K. Ganesan, D. Samithas, and C. B. Baladhanautham. 2020. Experimental investigation on output power enhancement of partial shaded solar photovoltaic system. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 1–17. https://doi.org/10.1080/15567036.2020.1779872
  • Ramli, M. A. M., S. Twaha, K. Ishaque, and Y. A. Al-Turki. 2017. A review on maximum power point tracking for photovoltaic systems with and without shading conditions. Renewable and Sustainable Energy Reviews 67:144–59. doi:10.1016/j.rser.2016.09.013.
  • Sarvi, M., and A. Azadian. 2021. A comprehensive review and classified comparison of mppt algorithms in pv systems. Energy System 1–40.
  • Srinivasarao, P., K. Peddakapu, M. R. Mohamed, K. Keerthi Deepika, and K. Sudhakar. 2021. Simulation and experimental design of adaptive-based maximum power point tracking methods for photovoltaic systems. Computers & Electrical Engineering 89:106910. doi:10.1016/j.compeleceng.2020.106910.
  • Tey, K. S., S. Mekhilef, M. Seyedmahmoudian, B. Horan, A. T. Oo, and A. Stojcevski. 2018. Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation. IEEE Transactions on Industrial Informatics 14 (10):4322–33. doi:10.1109/TII.2018.2793210.
  • Titri, S., C. Larbes, K. Y. Toumi, and K. Benatchba. 2017. A new MPPT controller based on the Ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Applied Soft Computing 58:465–79. doi:10.1016/j.asoc.2017.05.017.
  • Tsikalakis, A., T. Tomtsi, N. D. Hatziargyriou, A. Poullikkas, C. Malamatenios, E. Giakoumelos, O. C. Jaouad, A. Chenak, A. Fayek, T. Matar, et al. 2011. Review of best practices of solar electricity resources applications in selected Middle East and North Africa (MENA) countries. Renewable and Sustainable Energy Reviews. 15(6):2838–49. doi:10.1016/j.rser.2011.03.005.
  • Xie, Z., and Z. Wu. 2022. A flexible power point tracking algorithm for photovoltaic system under partial shading condition. Sustainable Energy Technologies and Assessments 49:101747. doi:10.1016/j.seta.2021.101747.
  • Zafar, M. N., and J. C. Mohanta. 2018. Methodology for path planning and optimization of mobile robots: A review. Procedia Computer Science 133:141–52. doi:10.1016/j.procs.2018.07.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.