349
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A study of solar heat gain variation in building applied photovoltaic buildings and its impact on environment and indoor air quality

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6192-6212 | Received 21 Mar 2022, Accepted 27 Jun 2022, Published online: 11 Jul 2022

References

  • Antoniadou, P., and A. M. Papadopoulos. 2017. Development of an integrated, personalized comfort methodology for office buildings. Energies 10 (8):1202. doi:10.3390/en10081202.
  • Asdrubali, F., C. Buratti, F. Cotana, G. Baldinelli, M. Goretti, E. Moretti, C. Baldassarri, E. Belloni, F. Bianchi, A. Rotili, et al. 2013. Evaluation of green buildings’ overall performance through in situ monitoring and simulations. Energies. 6(12):6525–47. doi:10.3390/en6126525.
  • Attia, S., M. Hamdy, W. O’Brien, and S. Carlucci. 2013. Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings 60:110–24. doi:10.1016/j.enbuild.2013.01.016.
  • Baenas, T., and M. Machado. 2017. On the analytical calculation of the solar heat gain coefficient of a BIPV module. Energy and Buildings 151:146–56. doi:10.1016/j.enbuild.2017.06.039.
  • Bahadori-Jahromi, A., R. Salem, A. Mylona, P. Godfrey and D. Cook . 2018. Retrofit of a UK residential property to achieve nearly zero energy building standard. Advances in Environmental Research 7 (1):13–28.
  • Bensafi, M., H. Ameur, N. Kaid, S. Hoseinzadeh, S. Memon, and D. A. Garcia. 2021. Thermophysics analysis of office buildings with a temperature–Humidity coupling strategy under hot-arid climatic conditions. International Journal of Thermophysics. 42(8):1–20. doi:10.1007/s10765-021-02858-1.
  • Chen, Y.-H., Y.-P. Tu, S.-Y. Sung, W.-C. Weng, H.-L. Huang, and Y. I. Tsai. . 2022. A comprehensive analysis of the intervention of a fresh air ventilation system on indoor air quality in classrooms. Atmospheric Pollution Research. 13(4):101373. doi:10.1016/j.apr.2022.101373.
  • Cheng, Z., N. Lei, Z. Bu, H. Sun, B. Li and B. Lin. 2022. Investigations of indoor air quality for office buildings in different climate zones of China by subjective survey and field measurement. Vol. 214. Building and Environment. 108899
  • Dominguez, A., J. Kleissl, and J. C. Luvall. 2011. Effects of solar photovoltaic panels on roof heat transfer. Solar Energy 85 (9):2244–55. doi:10.1016/j.solener.2011.06.010.
  • Gentle, A., J. Aguilar, and G. Smith. 2011. Optimized cool roofs: Integrating albedo and thermal emittance with R-value. Solar Energy Materials and Solar Cells 95 (12):3207–15. doi:10.1016/j.solmat.2011.07.018.
  • Hema, C., A. Messan, A. Lawane, D. Soro, P. Nshimiyimana, and G. van Moeseke. . 2021. Improving the thermal comfort in hot region through the design of walls made of compressed earth blocks: An experimental investigation. Journal of Building Engineering 38:102148. doi:10.1016/j.jobe.2021.102148.
  • Hosseini, M., and H. Akbari. 2014. Heating energy penalties of cool roofs: The effect of snow accumulation on roofs. Advances in Building Energy Research 8 (1):1–13. doi:10.1080/17512549.2014.890541.
  • Indraganti, M., R. Ooka, and H. B. Rijal. 2013. Thermal comfort in offices in summer: Findings from a field study under the ‘setsuden’conditions in Tokyo, Japan. Vol. 61. 114–32. Building and Environment
  • Indraganti, M., R. Ooka, and H. B. Rijal. 2015. Thermal comfort in offices in India: Behavioral adaptation and the effect of age and gender. Energy and Buildings 103:284–95. doi:10.1016/j.enbuild.2015.05.042.
  • Kapsalis, V., and D. Karamanis. 2015. On the effect of roof added photovoltaics on building’s energy demand. Energy and Buildings 108:195–204.
  • Karava, P., A. Athienitis, T. Stathopoulos and E. Mouriki. 2012. Experimental study of the thermal performance of a large institutional building with mixed-mode cooling and hybrid ventilation. Vol. 57. Building and Environment. 313–26.
  • Kuznik, F., J. Virgone, and K. Johannes. 2011. In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renewable Energy 36 (5):1458–62. doi:10.1016/j.renene.2010.11.008.
  • Kwok, H. H., J. C. P. Cheng, A. T. Y. Li, J. C. K. Tong, A. K. H. Lau, et al. 2022. Impact of shaft design to thermal comfort and indoor air quality of floors using BIM technology. Journal of Building Engineering 51:104326. doi:10.1016/j.jobe.2022.104326.
  • Li, J., B. Zheng, X. Chen, Z. Qi, K. B. Bedra, J. Zheng, Z. Li, and L. Liu. 2021. Study on a full-year improvement of indoor thermal comfort by different vertical greening patterns. Journal of Building Engineering 35:101969. doi:10.1016/j.jobe.2020.101969.
  • Liang, -H.-H., T.-P. Lin, and R.-L. Hwang. 2012. Linking occupants’ thermal perception and building thermal performance in naturally ventilated school buildings. Applied Energy 94:355–63. doi:10.1016/j.apenergy.2012.02.004.
  • Liang, R., Pan, Q., Wang, P., & Zhang, J. 2018. Experiment research of solar PV/T cogeneration system on the building façade driven by a refrigerant pump. Energy. 161. 744–52
  • Nejat, P., H. M. Hussen, F. Fadli, H. N. Chaudhry, J. Calautit, and F. Jomehzadeh. 2020. Indoor environmental quality (IEQ) analysis of a two-sided windcatcher integrated with anti-short-circuit device for low wind conditions. Processes. 8(7):840. doi:10.3390/pr8070840.
  • Panteli, C., A. Kylili, L. Stasiuliene, L. Seduikyte, and P. A. Fokaides. 2018. A framework for building overhang design using building information modeling and life cycle assessment. Journal of Building Engineering 20:248–55. doi:10.1016/j.jobe.2018.07.022.
  • Prado, R. T. A., and F. L. Ferreira. 2005. Measurement of albedo and analysis of its influence the surface temperature of building roof materials. Energy and Buildings 37 (4):295–300.
  • Sakhri, N., Y. Menni, A. J. Chamkha, G. Lorenzini, H. Ameur, N. Kaid, and M. Bensafi. 2021. Experimental study of an earth-to-air heat exchanger coupled to the solar chimney for heating and cooling applications in arid regions. Journal of Thermal Analysis and Calorimetry. 145(6):3349–58. doi:10.1007/s10973-020-09867-6.
  • Sakhri, N., H. Ahmad, W. Shatanawi, Y. Menni, H. Ameur, and T. Botmart. 2022. Different scenarios to enhance thermal comfort by renewable-ecological techniques in hot dry environment. Case Studies in Thermal Engineering 32:101886. doi:10.1016/j.csite.2022.101886.
  • Salamanca, F., Georgescu, M., Mahalov, A., Moustaoui, M., & Martilli, A. 2016. Citywide impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand. Boundary-layer meteorology. 161(1):203–21.
  • Sghiouri, H., A. Mezrhab, M. Karkri, and H. Naji. 2018. Shading devices optimization to enhance thermal comfort and energy performance of a residential building in Morocco. Journal of Building Engineering 18:292–302. doi:10.1016/j.jobe.2018.03.018.
  • Shariah, A., B. Shalabi, A. Rousan, and B. Tashtoush. 1998. Effects of absorptance of external surfaces on heating and cooling loads of residential buildings in Jordan. Energy Conversion and Management. 39(3–4):273–84. doi:10.1016/S0196-8904(96)00185-9.
  • Simpson, J., and E. McPherson. 1997. The effects of roof albedo modification on cooling loads of scale model residences in Tucson, Arizona. Arizona. Energy and Buildings 25 (2):127–37. doi:10.1016/S0378-7788(96)01002-X.
  • Spitler, J. D., and D. E. Fisher. 1999. On the relationship between the radiant time series and transfer function methods for design cooling load calculations. HVAC&R Research 5 (2):123–36. doi:10.1080/10789669.1999.10391228.
  • Swamy, G. 2021. Development of an indoor air purification system to improve ventilation and air quality. Heliyon 7 (10):e08153. doi:10.1016/j.heliyon.2021.e08153.
  • Wang, Y., W. Tian, J. Ren, L. Zhu, and Q. Wang. 2006. Influence of a building’s integrated-photovoltaics on heating and cooling loads. Applied Energy. 83(9):989–1003. doi:10.1016/j.apenergy.2005.10.002.
  • Wang, B., W. S. Koh, H. Liu, J. Yik, and V. P. Bui. 2017. Simulation and validation of solar heat gain in real urban environments. Building and Environment 123:261–76. doi:10.1016/j.buildenv.2017.07.006.
  • Wang, Y., D. Wang, and Y. Liu. 2017. Study on comprehensive energy-saving of shading and photovoltaics of roof added PV module. Vol. 132. 598–603. Energy Procedia
  • Wu, Z., C. Ma, X. Shi, L. Wu, Y. Dong and M. Stojmenovic . 2022. Imputing missing indoor air quality data with inverse mapping generative adversarial network. Building and Environment. 215. 108896
  • Yang, H., Z. Zhu, J. Burnett and L. Lu. 2001. A simulation study on the energy performance of photovoltaic roofs. ASHRAE Transactions 107:129.
  • Yu, G., H. Yang, Z. Yan, and M. Kyeredey Ansah. 2021. A review of designs and performance of façade-based building integrated photovoltaic-thermal (BIPVT) systems. Applied Thermal Engineering 182:116081. doi:10.1016/j.applthermaleng.2020.116081.
  • Zhao, O., W. Zhang, L. Xie, W. Wang, M. Chen, Z. Li, J. Li, X. Wu, X. Zeng and S. Du. 2022. Investigation of indoor environment and thermal comfort of building installed with bifacial PV modules. Vol. 76. Sustainable Cities and Society. 103463

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.