1,040
Views
15
CrossRef citations to date
0
Altmetric
Review

Plastic waste management via thermochemical conversion of plastics into fuel: a review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-20 | Received 06 Jan 2022, Accepted 29 Jun 2022, Published online: 08 Jul 2022

References

  • Adnan, S. J., M. R. Jan, and M. R. Jan. 2014. Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts. Journal of the Taiwan Institute of Chemical Engineers 45 (5):2494–500. doi:10.1016/j.jtice.2014.05.011.
  • Ahamed, A., L. Liang, W. P. Chan, P. C. K. Tan, N. T. X. Yip, J. Bobacka. 2021. In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes. Environmental Pollution (Barking, Essex: 1987) 276:116681. doi:10.1016/j.envpol.2021.116681.
  • Ahmad, I., M. I. Khan, H. Khan, M. Ishaq, R. Tariq, K. Gul, W. Ahmad 2015. Pyrolysis study of polypropylene and polyethylene into premium oil products. International Journal of Green Energy 12 (7):663–71. doi:10.1080/15435075.2014.880146.
  • Ahmad, M. S., M. A. Mehmood, O. S. Al Ayed, G. Ye, H. Luo, M. Ibrahim, U. Rashid, I. Arbi Nehdi, G. Qadir. 2017. Kinetic analyses and pyrolytic behavior of para grass (Urochloa mutica) for its bioenergy potential. Bioresource Technology 224:708–13. doi:10.1016/j.biortech.2016.10.090.
  • Aishwarya, K. N., and N. Sindhu. 2016. Microwave assisted pyrolysis of plastic waste. Procedia Technology 25:990–97. doi:10.1016/j.protcy.2016.08.197.
  • Al Rayaan, M. B. 2021. Recent advancements of thermochemical conversion of plastic waste to biofuel-A review. Clean Engineering Technology 2: 100062. doi:10.1016/j.clet.2021.100062.
  • Al-Salem, S. M. M., A. Antelava, A. Constantinou, G. Manos, and A. Dutta. 2017. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). Journal of Environmental Management 197:177–98. doi:10.1016/j.jenvman.2017.03.084.
  • Al-Salem, S. M., H. J. Karam, M. H. Al-Wadi, S. Alsamaq, G. Jiang, J. Wang, G. A. Leeke. 2021. Thermal degradation kinetics of real-life reclaimed plastic solid waste (PSW) from an active landfill site: The mining of an unsanitary arid landfill. Ain Shams Engineering Journal 12 (1):983–93. doi:10.1016/j.asej.2020.05.011.
  • Alam, S. S., P. R. Churkunti, and C. Depcik. 2021. Comparison of waste plastic fuel, waste cooking oil biodiesel, and ultra-low sulfur diesel using a well-to-exhaust framework. International Journal of Environment Science and Technology undefined–undefined. doi:10.1007/s13762-021-03552-3.
  • Alam, P., M. Sharholy, A. H. Khan, K. Ahmad, T. Alomayri, N. Radwan, A. Aziz. 2022. Energy generation and revenue potential from municipal solid waste using system dynamic approach. Chemosphere 299:134351. doi:10.1016/j.chemosphere.2022.134351.
  • Amran, M., G. Murali, N. H. A. Khalid, R. Fediuk, T. Ozbakkaloglu, Y. H. Lee. 2021. Slag uses in making an eco friendly and sustainable concrete: A review. Construction and Building Materials 272:121942. doi:10.1016/j.conbuildmat.2020.121942.
  • Arena, U., F. Di Gregorio, C. Amorese, and M. L. Mastellone. 2011. A techno-economic comparison of fluidized bed gasification of two mixed plastic wastes. Waste Management 31:1494–504. doi:10.1016/j.wasman.2011.02.004.
  • Arena, U. 2012. Process and technological aspects of municipal solid waste gasification. A review. Waste Management 32 (4):625–39. doi:10.1016/j.wasman.2011.09.025.
  • Arjanggi, R. D., and J. Kansedo. 2020. Recent advancement and prospective of waste plastics as biodiesel additives: A review. Journal of Energy Institution 93 (3):934–52. doi:10.1016/j.joei.2019.08.005.
  • Atabani, A. E., V. K. Tyagi, G. Fongaro, H. Treichel, A. Pugazhendhi, and A. T. Hoang. 2022. Integrated biorefineries, circular bio-economy, and valorization of organic waste streams with respect to bio-products. Biomass Conversion Biorefinery 12 (3):565–565. doi:10.1007/s13399-021-02017-4.
  • Ayeleru, O. O., S. Dlova, O. J. Akinribide, F. Ntuli, W. K. Kupolati, P. F. Marina, A. Blencowe, P. A. Olubambi 2020. Challenges of plastic waste generation and management in sub-Saharan Africa: A review. Waste Management 110:24–42. doi:10.1016/j.wasman.2020.04.017.
  • Aznar, M. P., M. A. Caballero, J. A. Sancho, and E. Francés. 2006. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Processing Technology 87 (5):409–20. doi:10.1016/j.fuproc.2005.09.006.
  • Bagri, R., and P. T. Williams. 2002. Catalytic pyrolysis of polyethylene. Journal of Analytical and Applied Pyrolysis 63 (1):29–41. doi:10.1016/S0165-2370(01)00139-5.
  • Bai, B., H. Jin, C. Fan, C. Cao, W. Wei, and W. Cao. 2019a. Experimental investigation on liquefaction of plastic waste to oil in supercritical water. Waste Management 89:247–53. doi:10.1016/j.wasman.2019.04.017.
  • Bai, B., Y. Liu, Q. Wang, J. Zou, H. Zhang, H. Jin, X. Li 2019b. Experimental investigation on gasification characteristics of plastic wastes in supercritical water. Renewable Energy 135:32–40. doi:10.1016/j.renene.2018.11.092.
  • Bai, B., W. Wang, and H. Jin. 2020. Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water. Energy 191:116527. doi:10.1016/j.energy.2019.116527.
  • Bai, B., Y. Liu, X. Meng, C. Liu, H. Zhang, W. Zhang, H. Jin 2020a. Experimental investigation on gasification characteristics of polycarbonate (PC) microplastics in supercritical water. Journal of the Energy Institute 93 (2):624–33. doi:10.1016/j.joei.2019.06.003.
  • Bai, B., Y. Liu, H. Zhang, F. Zhou, X. Han, Q. Wang, H. Jin 2020b. Experimental investigation on gasification characteristics of polyethylene terephthalate (PET) microplastics in supercritical water. Fuel 262:116630. doi:10.1016/j.fuel.2019.116630.
  • Baldinelli, A., G. Cinti, U. Desideri, and F. Fantozzi. 2016. Biomass integrated gasifier-fuel cells: Experimental investigation on wood syngas tars impact on NiYSZ-anode solid oxide fuel cells. Energy Convers Manag 128:361–70. doi:10.1016/j.enconman.2016.09.048.
  • Banu, J. R., V. G. Sharmila, U. Ushani, V. Amudha, and G. Kumar. 2020. Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies - A review. The Science of the Total Environment 718:137287. doi:10.1016/j.scitotenv.2020.137287.
  • Borges, F. C., Z. Du, Q. Xie, J. O. Trierweiler, Y. Cheng, Y. Wan, Y. Liu, R. Zhu, X. Lin, P. Chen. 2014. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresource Technology 156:267–74. doi:10.1016/j.biortech.2014.01.038.
  • Borgianni, C., P. De Filippis, F. Pochetti, and M. Paolucci. 2002. Gasification process of wastes containing PVC. Fuel 81:1827–33. doi:10.1016/S0016-2361(02)00097-2.
  • Brooks, A. L., S. Wang, and J. R. Jambeck. 2018. The Chinese import ban and its impact on global plastic waste trade. Sci Adv 4. doi:10.1126/sciadv.aat0131.
  • Bu, Q., K. Chen, W. Xie, Y. Liu, M. Cao, X. Kong, Q. Chu, H. Mao. 2019. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene. Bioresource Technology 291:121860. doi:10.1016/j.biortech.2019.121860.
  • Buekens, A. G. 1978. Resource recovery and waste treatment in Japan. Resour Recover Conserv 3 (3):275–306. doi:10.1016/0304-3967(78)90011-2.
  • Cao, C., C. Bian, G. Wang, B. Bai, Y. Xie, and H. Jin. 2020. Co-gasification of plastic wastes and soda lignin in supercritical water. Chemical Engineering Journal 388:124277. doi:10.1016/j.cej.2020.124277.
  • Çepelioğullar AP, Ö. 2013. Utilization of two different types of plastic wastes from daily and industrial life. Journal of Selcuk University Natural Applied Science 694–706.
  • Chan, W. P., A. Veksha, J. Lei, O. W-D, X. Dou, A. Giannis, G. Lisak, -T.-T. Lim. 2019. A hot syngas purification system integrated with downdraft gasification of municipal solid waste. Applied Energy 237:227–40. doi:10.1016/j.apenergy.2019.01.031.
  • Chen, Z., X. Zhang, W. Han, L. Gao, and S. Li. 2018. A power generation system with integrated supercritical water gasification of coal and CO2 capture. Energy 142:723–30. doi:10.1016/j.energy.2017.10.077.
  • Churkunti, P. R., J. Mattson, C. Depcik, and G. Devlin. 2016. Combustion analysis of pyrolysis end of life plastic fuel blended with ultra low sulfur diesel. Fuel Processing Technology 142:212–18. doi:10.1016/j.fuproc.2015.10.021.
  • Ciuffi, B., D. Chiaramonti, A. M. Rizzo, M. Frediani, and L. Rosi. 2020. A critical review of SCWG in the context of available gasification technologies for plastic waste. Applied Science 10 (18):6307. doi:10.3390/app10186307.
  • Cleetus, C., S. Thomas, and S. Varghese. 2013. Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine. Journal of Energy 2013:1–10. doi:10.1155/2013/608797.
  • Demirbas, A. 2004. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied Pyrolysis 72 (1):97–102. doi:10.1016/j.jaap.2004.03.001.
  • Diaz Silvarrey, L. S., and A. N. Phan. 2016. Kinetic study of municipal plastic waste. International Journal of Hydrogen Energy 41 (37):16352–64. doi:10.1016/j.ijhydene.2016.05.202.
  • Ding, K., S. Liu, Y. Huang, S. Liu, N. Zhou, P. Peng, Y. Wang, P. Chen, R. Ruan. 2019. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management 196:1316–25. doi:10.1016/j.enconman.2019.07.001.
  • Ebrahimi, M., and I. Moradpoor. 2016. Combined solid oxide fuel cell, micro-gas turbine and organic Rankine cycle for power generation (SOFC–MGT–ORC). Energy Conversion and Management 116:120–33. doi:10.1016/j.enconman.2016.02.080.
  • FakhrHoseini, S. M., and M. Dastanian. 2013. Predicting pyrolysis products of PE, PP, and PET using NRTL activity coefficient model. Journal of Chemical 2013:1–5. doi:10.1155/2013/487676.
  • Fan, L., P. Chen, Y. Zhang, S. Liu, Y. Liu, Y. Wang. 2017. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality. Bioresource Technology 225:199–205. doi:10.1016/j.biortech.2016.11.072.
  • Ferreira-Pinto, L., M. P. Silva Parizi, P. C. Carvalho de Araújo, A. F. Zanette, and L. Cardozo-Filho. 2019. Experimental basic factors in the production of H2 via supercritical water gasification. International Journal of Hydrogen Energy 44 (47):25365–83. doi:10.1016/j.ijhydene.2019.08.023.
  • Franco, C., F. Pinto, I. Gulyurtlu, and I. Cabrita. 2003. The study of reactions influencing the biomass steam gasification process☆. Fuel 82 (7):835–42. doi:10.1016/S0016-2361(02)00313-7.
  • Gaeta-Bernardi, A., and V. Parente. 2016. Organic municipal solid waste (MSW) as feedstock for biodiesel production: A financial feasibility analysis. Renew Energy 86:1422–32. doi:10.1016/j.renene.2015.08.025.
  • Gala, A., M. Guerrero, and J. M. Serra. 2020. Characterization of post-consumer plastic film waste from mixed MSW in Spain: A key point for the successful implementation of sustainable plastic waste management strategies. Waste Management 111:22–33. doi:10.1016/j.wasman.2020.05.019.
  • Ge, S., P. N. Y. Yek, Y. W. Cheng, C. Xia, W. A. Wan Mahari, R. K. Liew. 2021. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renewable Sustainable Energy Review 135:110148. doi:10.1016/j.rser.2020.110148.
  • Geyer, R. 2020. Production, use, and fate of synthetic polymers. Plast. Waste Recycl., Elsevier 13–32. doi:10.1016/B978-0-12-817880-5.00002-5.
  • Giannakitsidou, O., I. Giannikos, and A. Chondrou. 2020. Ranking European countries on the basis of their environmental and circular economy performance: A DEA application in MSW. Waste Manag 109:181–91. doi:10.1016/j.wasman.2020.04.055.
  • Gou, X., X. Zhao, S. Singh, and D. Qiao. 2019. Tri-pyrolysis: A thermo-kinetic characterisation of polyethylene, cornstalk, and anthracite coal using TGA-FTIR analysis. Fuel 252:393–402. doi:10.1016/j.fuel.2019.03.143.
  • Gunasee, S. D., M. Carrier, J. F. Gorgens, and R. Mohee. 2016. Pyrolysis and combustion of municipal solid wastes: Evaluation of synergistic effects using TGA-MS. Journal of Analytical and Applied Pyrolysis 121:50–61. doi:10.1016/j.jaap.2016.07.001.
  • Hasegawa, M., J. Fukuda, and D. Kunii. 1979. Gasification of solid waste in a fluidized bed reactor with circulating sand. Conservation Recycling 3 (2):143–53. doi:10.1016/0361-3658(79)90004-3.
  • Heberlein, S., W. P. Chan, A. Veksha, A. Giannis, L. Hupa, and G. Lisak. 2022. High temperature slagging gasification of municipal solid waste with biomass charcoal as a greener auxiliary fuel. Journal of Hazardous Materials 423:127057. doi:10.1016/j.jhazmat.2021.127057.
  • Hoang, A. T., V. V. Pham, and X. P. Nguyen. 2021. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production 305:127161. doi:10.1016/j.jclepro.2021.127161.
  • Hoang, A. T., S. Nizetic, H. C. Ong, C. T. Chong, A. E. Atabani, Pham VV, and V. V. Pham. 2021a. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Journal of Environmental Management 296:113194. doi:10.1016/j.jenvman.2021.113194.
  • Hoang, A. T., H. C. Ong, I. M. R. Fattah, C. T. Chong, C. K. Cheng, R. Sakthivel. 2021b. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology 223:106997. doi:10.1016/j.fuproc.2021.106997.
  • Hoang, A. T., Z. Huang, S. Nižetić, A. Pandey, X. P. Nguyen, R. Luque. 2022a. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy 47:4394–425. doi:10.1016/j.ijhydene.2021.11.091.
  • Hoang, A. T., S. Nižetić, K. H. Ng, A. M. Papadopoulos, A. T. Le, S. Kumar, H. Hadiyanto, V. V. Pham. 2022b. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere 287 (Pt 3):132285. doi:10.1016/j.chemosphere.2021.132285.
  • Huang, J., A. Veksha, W. P. Chan, and G. Lisak. 2021. Support effects on thermocatalytic pyrolysis-reforming of polyethylene over impregnated Ni catalysts. Applied Catalysis. A, General 622:118222. doi:10.1016/j.apcata.2021.118222.
  • Huang, J., A. Veksha, W. P. Chan, A. Giannis, and G. Lisak. 2022. Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes. Renewable Sustainable Energy Review 154:111866. doi:10.1016/j.rser.2021.111866.
  • Hussain, Z., K. M. Khan, and K. Hussain. 2010. Microwave–metal interaction pyrolysis of polystyrene. Journal of Analytical and Applied Pyrolysis 89 (1):39–43. doi:10.1016/j.jaap.2010.05.003.
  • Iliopoulou, E. F., S. D. Stefanidis, K. G. Kalogiannis, A. Delimitis, A. A. Lappas, and K. S. Triantafyllidis. 2012. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Applied Catalysis B Environment 127:281–90. doi:10.1016/j.apcatb.2012.08.030.
  • Jiang, H., W. Liu, X. Zhang, and J. Qiao. 2020. Chemical recycling of plastics by microwave-assisted high-temperature pyrolysis. Global Challenges 4 (4):1900074. doi:10.1002/gch2.201900074.
  • Jubinville, D., E. Esmizadeh, S. Saikrishnan, C. Tzoganakis, and T. Mekonnen. 2020. A comprehensive review of global production and recycling methods of polyolefin (PO) based products and their post-recycling applications. Sustainable Material Technology 25:e00188. doi:10.1016/j.susmat.2020.e00188.
  • Jung, S.-H., M.-H. Cho, B.-S. Kang, and J.-S. Kim. 2010. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology 91 (3):277–84. doi:10.1016/j.fuproc.2009.10.009.
  • Kerdlap, P., J. S. C. Low, and S. Ramakrishna. 2019. Zero waste manufacturing: A framework and review of technology, research, and implementation barriers for enabling a circular economy transition in Singapore. Resource Conservation Recyclying 151:104438. doi:10.1016/j.resconrec.2019.104438.
  • Khan, M. Z. H., M. Sultana, M. R. Al-Mamun, and M. R. Hasan. 2016. Pyrolytic waste plastic oil and its diesel blend: Fuel characterization. Journal of Environmental and Public Health 2016:1–6. doi:10.1155/2016/7869080.
  • Khan, A. H., E. A. López-Maldonado, N. A. Khan, L. J. Villarreal-Gómez, F. M. Munshi, A. H. Alsabhan, K. Perveen. 2021. Current solid waste management strategies and energy recovery in developing countries - State of art review. Chemosphere 291 (Pt 3):133088. doi:10.1016/j.chemosphere.2021.133088.
  • Khan, A. H., M. Sharholy, P. Alam, A. I. Al-Mansour, K. Ahmad, M. A. Kamal, S. Alam, M. N. Pervez, V. Naddeo. 2022. Evaluation of cost benefit analysis of municipal solid waste management systems. Journal of King Saudi University - Science 34:101997. doi:10.1016/j.jksus.2022.101997.
  • Killilea, W. R., K. C. Swallow, and G. T. Hong. 1992. The fate of nitrogen in supercritical-water oxidation. The Journal of Supercritical Fluids 5 (1):72–78. doi:10.1016/0896-8446(92)90044-K.
  • Kiran Ciliz, N., E. Ekinci, and C. E. Snape. 2004. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene. Waste Management 24 (2):173–81. doi:10.1016/j.wasman.2003.06.002.
  • Kothandaraman, MP, and M Somasundaram. 2021. Co-pyrolysis of Juliflora biomass with low-density polyethylene for bio-oil synthesis. Energy Sources, Part A Recovery Utilization and Environment Efficiency 43:1134–49. doi:10.1080/15567036.2019.1635232.
  • Kuo, P. C., B. Illathukandy, W. Wu, and J. S. Chang. 2020. Plasma gasification performances of various raw and torrefied biomass materials using different gasifying agents. Bioresource Technology 314. doi:10.1016/j.biortech.2020.123740.
  • Lacovidou, E., A. P. M. Velenturf, and P. Purnell. 2019. Quality of resources: A typology for supporting transitions towards resource efficiency using the single-use plastic bottle as an example. The Science of the Total Environment 647:441–48. doi:10.1016/j.scitotenv.2018.07.344.
  • Lam, S. S., W. A. Wan Mahari, Y. S. Ok, W. Peng, C. T. Chong, N. L. Ma, H. A. Chase, Z. Liew, S. Yusup, E. E. Kwon 2019. Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis. Renewable and Sustainable Energy Reviews 115:109359. doi:10.1016/j.rser.2019.109359.
  • Lazzarotto, I. P., S. D. Ferreira, J. Junges, G. R. Bassanesi, C. Manera, D. Perondi. 2020. The role of CaO in the steam gasification of plastic wastes recovered from the municipal solid waste in a fluidized bed reactor. Processing Safety Environment Protocol 140:60–67. doi:10.1016/j.psep.2020.04.009.
  • Li, Y., H. Wang, L. Jiang, W. Zhang, R. Li, and Y. Chi. 2015. HCl and PCDD/Fs emission characteristics from incineration of source-classified combustible solid waste in fluidized bed. RSC Advances 5 (83):67866–73. doi:10.1039/c5ra08722h.
  • Liu, Y., C. Fan, H. Zhang, J. Zou, F. Zhou, and H. Jin. 2019. The resource utilization of ABS plastic waste with subcritical and supercritical water treatment. International Journal of Hydrogen Energy 44 (30):15758–65. doi:10.1016/j.ijhydene.2018.08.012.
  • Lokahita, B., M. Aziz, K. Yoshikawa, and F. Takahashi. 2017. Energy and resource recovery from Tetra Pak waste using hydrothermal treatment. Applied Energy 207:107–13. doi:10.1016/j.apenergy.2017.05.141.
  • Lopez, G., M. Artetxe, M. Amutio, J. Bilbao, and M. Olazar. 2017. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Review 73:346–68. doi:10.1016/j.rser.2017.01.142.
  • Loy, A. C. M., D. K. W. Gan, S. Yusup, B. L. F. Chin, M. K. Lam, M. Shahbaz, P. Unrean, M. N. Acda, E. Rianawati. 2018a. Thermogravimetric kinetic modelling of in-situ catalytic pyrolytic conversion of rice husk to bioenergy using rice hull ash catalyst. Bioresource Technology 261:213–22. doi:10.1016/j.biortech.2018.04.020.
  • Loy, A. C. M., S. Yusup, M. K. Lam, B. L. F. Chin, M. Shahbaz, A. Yamamoto. 2018b. The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Conversion and Management 165:541–54. doi:10.1016/j.wasman.2011.02.004.
  • Loy, A. C. M., A. T. Quitain, M. K. Lam, S. Yusup, M. Sasaki, and T. Kida. 2019. Development of high microwave-absorptive bifunctional graphene oxide-based catalyst for biodiesel production. Energy Conversion and Management 180:1013–25. doi:10.1016/j.enconman.2018.11.043.
  • Ma, W., T. Wenga, F. J. Frandsen, B. Yan, and G. Chen. 2020. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Program Energy Combustion Science 76:100789. doi:10.1016/j.pecs.2019.100789.
  • Marcilla, A., M. I. Beltrán, and R. Navarro. 2009. Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Applied Catalysis B Environment 86 (1–2):78–86. doi:10.1016/j.apcatb.2008.07.026.
  • Marquez-Montesinos, F., T. Cordero, J. Rodrı́guez-Mirasol, and J. J. Rodrı́guez. 2002. CO2 and steam gasification of a grapefruit skin char. Fuel 81 (4):423–29. doi:10.1016/S0016-2361(01)00174-0.
  • Mastral, F., E. Esperanza, P. Garcı́a, and M. Juste. 2002. Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time. Journal of Analytical and Applied Pyrolysis 63 (1):1–15. doi:10.1016/S0165-2370(01)00137-1.
  • Mazzoni, L., and I. Janajreh. 2017. Plasma gasification of municipal solid waste with variable content of plastic solid waste for enhanced energy recovery. International Journal of Hydrogen Energy 42 (30):19446–57. doi:10.1016/j.enconman.2006.09.004.
  • Miranda, R., J. Yang, C. Roy, and C. Vasile. 1999. Vacuum pyrolysis of PVC I. Kinetic Study Polymer Degradation Stability 64 (1):127–44. doi:10.1016/S0141-3910(98)00186-4.
  • Miskolczi, N., L. Bartha, G. Deák, B. Jóver, and D. Kalló. 2004. Thermal and thermo-catalytic degradation of high-density polyethylene waste. Journal of Analytical and Applied Pyrolysis 72 (2):235–42. doi:10.1016/j.jaap.2004.07.002.
  • Mortezaeikia, V., O. Tavakoli, and M. S. Khodaparasti. 2021. A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. Journal of Analytical and Applied Pyrolysis 160:105340. doi:10.1016/j.jaap.2021.105340.
  • Munir, M. T., I. Mardon, S. Al-Zuhair, A. Shawabkeh, and N. U. Saqib. 2019. Plasma gasification of municipal solid waste for waste-to-value processing. Renewable and Sustainable Energy Review 116:109461. doi:10.1016/j.rser.2019.109461.
  • Murer, M. J., H. Spliethoff, W. C. M. W. de, S. Wilpshaar, B. Berkhout, B. M. A. J. van. 2011. High efficient waste-to-energy in Amsterdam: Getting ready for the next steps. Waste Management Research Journal of Sustainable Circular Economics 29:S20–9. doi:10.1177/0734242X11413334.
  • Nayak, S. K., A. T. Hoang, B. Nayak, and P. C. Mishra. 2021. Influence of fish oil and waste cooking oil as post mixed binary biodiesel blends on performance improvement and emission reduction in diesel engine. Fuel 289:119948. doi:10.1016/j.fuel.2020.119948.
  • Nurcahyani, P. R., S. Hashimoto, and Y. Matsumura. 2020. Supercritical water gasification of microalgae with and without oil extraction. The Journal of Supercritical Fluids 165:104936. doi:10.1016/j.supflu.2020.104936.
  • Okajima, I., K. Watanabe, S. Haramiishi, M. Nakamura, Y. Shimamura, and T. Sako. 2017. Recycling of carbon fiber reinforced plastic containing amine-cured epoxy resin using supercritical and subcritical fluids. The Journal of Supercritical Fluids 119:44–51. doi:10.1016/0361-3658(79)90004-3.
  • Okolie, J. A., R. Rana, S. Nanda, A. K. Dalai, and J. A. Kozinski. 2019. Supercritical water gasification of biomass: A state-of-the-art review of process parameters, reaction mechanisms and catalysis. Sustainable Energy & Fuels 3 (3):578–98. doi:10.1039/c8se00565f.
  • Önal, E., B. B. Uzun, and A. E. Pütün. 2014. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Conversion and Management 78:704–10. doi:10.1016/j.enconman.2013.11.022.
  • Ong, H. C., W. H. Chen, Y. Singh, Y. Y. Gan, C. Y. Chen, and P. L. Show. 2020. A state-of-the-art review on thermochemical conversion of biomass for biofuel production: A TG-FTIR approach. Energy Conversion and Management 209:112634. doi:10.1016/j.enconman.2020.112634.
  • Onwudili, J. A., N. Insura, and P. T. Williams. 2009. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis 86 (2):293–303. doi:10.1016/j.jaap.2009.07.008.
  • Onwudili, J. A., and P. T. Williams. 2016. Catalytic supercritical water gasification of plastics with supported RuO2: A potential solution to hydrocarbons–water pollution problem. Process Safety and Environmental Protection 102:140–49. doi:10.1016/j.psep.2016.02.009.
  • Osada, M., N. Tanigaki, S. Takahashi, and S. Sakai. 2008. Brominated flame retardants and heavy metals in automobile shredder residue (ASR) and their behavior in the melting process. Journal of Material Cycles and Waste Management 10:93–101. doi:10.1007/s10163-007-0204-y.
  • Özsin, G., and A. E. Pütün. 2019. TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process. Energy Conversion Management 182:143–53. doi:10.1016/j.enconman.2018.12.060.
  • Pan, Z., Q. Liu, L. Zhang, X. Zhang, and S. H. Chan. 2015. Effect of Sr surface segregation of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 − δ electrode on its electrochemical performance in SOC. Journal of the Electrochemical Society 162 (12):F1316–23. doi:10.1149/2.0371512jes.
  • Paulino, R. F. S., A. M. Essiptchouk, and J. L. Silveira. 2020. The use of syngas from biomedical waste plasma gasification systems for electricity production in internal combustion: Thermodynamic and economic issues. Energy 199:117419. doi:10.1016/j.energy.2020.117419.
  • Perera, S. M. H. D., C. Wickramasinghe, B. K. T. Samarasiri, and M. Narayana. 2021. Modeling of thermochemical conversion of waste biomass – A comprehensive review. Biofuel Research Journal 8 (4):1481–528. doi:10.18331/BRJ2021.8.4.3.
  • Piazzi, S., X. Zhang, F. Patuzzi, and M. Baratieri. 2020. Techno-economic assessment of turning gasification-based waste char into energy: A case study in South-Tyrol. Waste Management 105:778–86. doi:10.1016/j.enconman.2006.09.004.
  • Pinto, F., C. Franco, R. N. André, M. Miranda, I. Gulyurtlu, and I. Cabrita. 2002. Co-gasification study of biomass mixed with plastic wastes. Fuel 81 (3):291–97. doi:10.1016/S0016-2361(01)00164-8.
  • Pinto, F., C. Franco, R. N. André, C. Tavares, M. Dias, I. Gulyurtlu. 2003. Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel 82:1967–76. doi:10.1016/S0016-2361(03)00160-1.
  • Ponzio, A., S. Kalisz, and W. Blasiak. 2006. Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Processing Technology 87 (3):223–33. doi:10.1016/j.fuproc.2005.08.002.
  • Praveen Kumar, K., and S. Srinivas. 2020. Catalytic Co-pyrolysis of biomass and plastics (Polypropylene and Polystyrene) using spent FCC catalyst. Energy & Fuels 34 (1):460–73. doi:10.1021/acs.energyfuels.9b03135.
  • Punčochář, M., B. Ruj, and P. K. Chatterjee. 2012. Development of process for disposal of plastic waste using plasma pyrolysis technology and option for energy recovery. Procedia Engineering 42, 420–30. Elsevier Ltd. doi:10.1016/j.proeng.2012.07.433.
  • Putra, P. H. M., S. Rozali, M. F. A. Patah, and A. Idris. 2022. A review of microwave pyrolysis as a sustainable plastic waste management technique. Journal of Environmental Management 303:114240. doi:10.1016/j.jenvman.2021.114240.
  • Qin, L., J. Han, B. Zhao, Y. Wang, W. Chen, and F. Xing. 2018. Thermal degradation of medical plastic waste by in-situ FTIR, TG-MS and TG-GC/MS coupled analyses. Journal of Analytical and Applied Pyrolysis 136:132–45. doi:10.1016/j.jaap.2018.10.012.
  • Ray, R., and R. Thorpe. A comparison of gasification with pyrolysis for the recycling of plastic containing wastes. International Journal of Chemical Reaction Engineering 51:20075doi: 10.2202/1542-6580.1504.
  • Rex, P., I. P. Masilamani, and L. R. Miranda. 2020. Microwave pyrolysis of polystyrene and polypropylene mixtures using different activated carbon from biomass. Journal of the Energy Institute 93 (5):1819–32. doi:10.1016/j.joei.2020.03.013.
  • Ritchie, H., and M. Roser. 2018. Plastic pollution. Our World Data. https://ourworldindata.org/plastic-pollution
  • Robinson, G. 2009. Recovering value from mixed plastics waste. Proceedings of the Institution Civil Engineering - Waste Resource Management 162:207–13. doi:10.1680/warm.2009.162.4.207.
  • Ruiz, J. A., M. C. Juárez, M. P. Morales, P. Muñoz, and M. A. Mendívil. 2013. Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Review 18:174–83. doi:10.1016/j.rser.2012.10.021.
  • S, N. 2022. Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis. The Science of the Total Environment 809:151160. doi:10.1016/j.scitotenv.2021.151160.
  • Sahraei Moghadam, A., F. Omidinasab, and S. Moazami Goodarzi. 2021. Characterization of concrete containing RCA and GGBFS: Mechanical, microstructural and environmental properties. Construction and Building Materials 289:123134. doi:10.1016/j.conbuildmat.2021.123134.
  • Sakata, Y., M. A. Uddin, and A. Muto. 1999. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Journal of Analytical and Applied Pyrolysis 51 (1–2):135–55. doi:10.1016/S0165-2370(99)00013-3.
  • Saraçoğlu, E., B. B. Uzun, and E. Apaydın-Varol. 2017. Upgrading of fast pyrolysis bio-oil over Fe modified ZSM-5 catalyst to enhance the formation of phenolic compounds. International Journal of Hydrogen Energy 42 (33):21476–86. doi:10.1016/j.ijhydene.2017.07.001.
  • Shahabuddin, M., B. B. Krishna, T. Bhaskar, and G. Perkins. 2020. Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses. Bioresource Technology 299:122557. doi:10.1016/j.biortech.2019.122557.
  • Sharma, B., S. Shekhar, S. Sharma, and P. Jain. 2021. The paradigm in conversion of plastic waste into value added materials. Clean Engineering Technology 4. doi:10.1016/j.clet.2021.100254.
  • Sharuddin, S. D. A., F. Abnisa, W. M. A. W. Daud, and M. K. Aroua. 2018. Pyrolysis of plastic waste for liquid fuel production as prospective energy resource. IOP Conference Series Material Science and Engineering 334:012001. doi:10.1088/1757-899X/334/1/012001.
  • Slapak, M. J., J. M. van Kasteren, and A. A. Drinkenburg. 2000. Design of a process for steam gasification of PVC waste. Resource Conservation Recyclying 30 (2):81–93. doi:10.1016/S0921-3449(00)00047-1.
  • Stenmarck, Å., E. L. Belleza, A. Fråne, N. Busch, Å. Larsen, and M. Wahlström. 2017. Hazardous substances in plastics. Copenhagen: Nordic Council of Ministers. doi:10.6027/TN2017-505.
  • Stiles, H., and R. Kandiyoti. 1989. Secondary reactions of flash pyrolysis tars measured in a fluidized bed pyrolysis reactor with some novel design features. Fuel 68 (3):275–82. doi:10.1016/0016-2361(89)90087-2.
  • Su, W., C. Cai, P. Liu, W. Lin, B. Liang, H. Zhang, Z. Ma, H. Ma, Y. Xing, W. Liu 2020. Supercritical water gasification of food waste: Effect of parameters on hydrogen production. International Journal of Hydrogen Energy 45 (29):14744–55. doi:10.1016/j.ijhydene.2020.03.190.
  • Tang, Y., Q. Huang, K. Sun, Y. Chi, and J. Yan. 2018. Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic. Bioresource Technology 249:16–23. doi:10.1016/j.biortech.2017.09.210.
  • Tanigaki, N., K. Manako, and M. Osada. 2012. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system. Waste Management 32 (4):667–75. doi:10.1016/j.wasman.2011.10.019.
  • Tavares, R., A. Ramos, and A. Rouboa. 2019. A theoretical study on municipal solid waste plasma gasification. Waste Management 90:37–45. doi:10.1016/j.wasman.2019.03.051.
  • Tuan Hoang, A., and V. Viet Pham. 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renewable and Sustainable Energy Review 148:111265. doi:10.1016/j.rser.2021.111265.
  • Tuan Hoang, A., S. Nižetić, H. Chyuan Ong, W. Tarelko, V. Viet Pham, H. Le T, M. Quang Chau, X. Phuong Nguyen. 2021. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable and Energy Technology Assessments 47:101416. doi:10.1016/j.seta.2021.101416.
  • Veksha, A., A. Ahamed, X. Y. Wu, L. Liang, W. P. Chan, A. Giannis, G. Lisak. 2022. Technical and environmental assessment of laboratory scale approach for sustainable management of marine plastic litter. Journal of Hazardous Materials 421:126717. doi:10.1016/j.jhazmat.2021.126717.
  • Wan Mahari, W. A., C. T. Chong, C. K. Cheng, C. L. Lee, K. Hendrata, P. N. Yuh Yek, N. L. Ma, S. S. Lam. 2018. Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy 162:309–17. doi:10.1016/j.energy.2018.08.002.
  • Wan Mahari, W. A., E. Azwar, S. Y. Foong, A. Ahmed, W. Peng, M. Tabatabaei, M. Aghbashlo, Y.-K. Park, C. Sonne, S. S. Lam 2021. Valorization of municipal wastes using co-pyrolysis for green energy production, energy security, and environmental sustainability: A review. Chemical Engineering Journal 421:129749. doi:10.1016/j.cej.2021.129749.
  • Wang, L., H. Lei, and R. Ruan. 2015. Techno-economic analysis of microwave-assisted pyrolysis for production of biofuels. Dordecht: Springer. pp. 251–63. doi: 10.1007/978-94-017-9612-5_12.
  • Wang, C., C. Zhu, W. Cao, W. Wei, and H. Jin. 2021. Catalytic mechanism study on the gasification of depolymerizing slag in supercritical water for hydrogen production. International Journal of Hydrogen Energy 46 (3):2917–26. doi:10.1016/j.wasman.2018.10.042.
  • Williams, P. T., and E. A. Williams. 1999. Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock. Journal of Analytical and Applied Pyrolysis 51 (1–2):107–26. doi:10.1016/S0165-2370(99)00011-X.
  • Winans, K., A. Kendall, and H. Deng. 2017. The history and current applications of the circular economy concept. Renewable and Sustainable Energy Review 68:825–33. doi:10.1016/j.rser.2016.09.123.
  • Xia, C., L. Cai, H. Zhang, L. Zuo, S. Q. Shi, and S. S. Lam. 2021. A review on the modeling and validation of biomass pyrolysis with a focus on product yield and composition. Biofuel Research Journal 8 (1):1296–315. doi:10.18331/BRJ2021.8.1.2.
  • Xiao, R., B. Jin, H. Zhou, Z. Zhong, and M. Zhang. 2007. Air gasification of polypropylene plastic waste in fluidized bed gasifier. Energy Conversion Management 48 (3):778–86. doi:10.1016/j.enconman.2006.09.004.
  • Xiao, G., M. Ni, Y. Chi, B. Jin, R. Xiao, Z. Zhong. 2009. Gasification characteristics of MSW and an ANN prediction model. Waste Management 29 (1):240–44. doi:10.1016/j.wasman.2008.02.022.
  • Yin, S., R. Rajarao, B. Gong, Y. Wang, C. Kong, and V. Sahajwalla. 2019. Thermo-delamination of metallised composite plastic: An innovative approach to generate aluminium from packaging plastic waste. Journal of Cleaner Production 211:321–29. doi:10.1016/j.jclepro.2018.11.158.
  • Zanzi, R., K. Sjöström, and E. Björnbom. 1996. Rapid high-temperature pyrolysis of biomass in a free-fall reactor. Fuel 75 (5):545–50. doi:10.1016/0016-2361(95)00304-5.
  • Zanzi, R., K. Sjöström, and E. Björnbom. 2002. Rapid pyrolysis of agricultural residues at high temperature. Biomass & Bioenergy 23 (5):357–66. doi:10.1016/S0961-9534(02)00061-2.
  • Zhang, Q., L. Dor, D. Fenigshtein, W. Yang, and W. Blasiak. 2012. Gasification of municipal solid waste in the plasma gasification melting process. Applied Energy 90 (1):106–12. doi:10.1016/j.apenergy.2011.01.041.
  • Zhang, R., Y. Luo, and R. Yin. 2018. Experimental study on dioxin formation in an MSW gasification-combustion process: An attempt for the simultaneous control of dioxins and nitrogen oxides. Waste Management 82:292–301. doi:10.1016/j.wasman.2018.10.042.
  • Zhang, Y., G. Ji, C. Chen, Y. Wang, W. Wang, and A. Li. 2020. Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology 206:106455. doi:10.1016/j.fuproc.2020.106455.
  • Zhang, F., Y. Zhao, D. Wang, M. Yan, J. Zhang, P. Zhang. 2021. Current technologies for plastic waste treatment: A review. Journal of Cleaner Production 282. doi:10.1016/j.jclepro.2020.124523.
  • Zheng, Y., F. Wang, X. Yang, Y. Huang, C. Liu, Z. Zheng, J. Gu. 2017. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. Journal of Analytical and Applied Pyrolysis 126:169–79. doi:10.1016/j.jaap.2017.06.011.
  • Zhou, H., Y. Q. Long, A. H. Meng, Q. H. Li, and Y. G. Zhang. 2015. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Management 38:194–200. doi:10.1016/j.wasman.2014.09.027.
  • Zolezzi, M., C. Nicolella, S. Ferrara, C. Iacobucci, and M. Rovatti. 2004. Conventional and fast pyrolysis of automobile shredder residues (ASR). Waste Managemant 24 (7):691–99. doi:10.1016/j.wasman.2003.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.