332
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Effect of rice husk volatiles in iron ore reduction and its kinetic study

, & ORCID Icon
Pages 6321-6333 | Received 09 Dec 2021, Accepted 29 Jun 2022, Published online: 11 Jul 2022

References

  • Abd Rashid, R. Z., H. Mohd Salleh, M. H. Ani, N. A. Yunus, T. Akiyama, and H. Purwanto. 2014. Reduction of low grade iron ore pellet using palm kernel shell. Renewable Energy 63:617–23. doi:10.1016/j.renene.2013.09.046.
  • Bagatini, M. C., T. Kan, T. J. Evans, and V. Strezov. 2021. Iron ore reduction by biomass volatiles. Journal of Sustainable Metallurgy 7 (1):215–26. doi:10.1007/S40831-021-00337-3.
  • Baliarsingh, K. S., and B. Mihra. 2008. Kinetics of iron ore reduction by coal and charcoal - a thesis submitted in partial fulfillment of the requirements for the degree of bachelor of technology in metallurgical and materials engineering. Department of Metallurgical and Materials Engineering. National Institute of Technology 1–28. http://ethesis.nitrkl.ac.in/124/1/10404014.pdf
  • Borel, L. D. M. S., A. M. Reis Filho, T. P. Xavier, T. S. Lira, and M. A. S. Barrozo. 2020. An investigation on the pyrolysis of the main residue of the brewing industry. Biomass and Bioenergy 140 (August):105698. doi:10.1016/j.biombioe.2020.105698.
  • Chu, M., and Q. Z. 2018. Present status and development perspective of direct reduction and smelting reduction in China. China Metal 18:1–9.
  • Dutta, S. K., and R. Sah. 2016. Direct reduced iron: Production. Encyclopedia of Iron, Steel, and Their Alloys September:1082–108. doi:10.1081/e-eisa-120050996.
  • Fick, G., O. Mirgaux, P. Neau, and F. Patisson. 2014. Using biomass for pig iron production: A technical, environmental and economical assessment. Waste and Biomass Valorization 5 (1):43–55. doi:10.1007/S12649-013-9223-1.
  • Gibran, F. R., A. Surjosatyo, A. A. Hermawan, H. Dafiqurrohman, M. B. Anggriawan, N. R. Yusuf, and S. Maarif. 2018. Optimization of fixed bed downdraft reactor for rice husk biomass gasification using secondary air intake variation. International Journal of Technology 9 (2):390–99. doi:10.14716/IJTECH.V9I2.1081.
  • Guo, D., M. Hu, C. Pu, B. Xiao, Z. Hu, S. Liu, X. Wang, and X. Zhu. 2015. Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas. International Journal of Hydrogen Energy 40 (14):4733–40. doi:10.1016/j.ijhydene.2015.02.065.
  • Guo, D., Y. Li, B. Cui, Z. Chen, S. Luo, B. Xiao, H. Zhu, and M. Hu. 2017. Direct reduction of iron ore/biomass composite pellets using simulated biomass-derived syngas: Experimental analysis and kinetic modelling. Chemical Engineering Journal 327:822–30. doi:10.1016/j.cej.2017.06.118.
  • Hlavsová, A., A. Corsaro, H. Raclavská, D. Juchelková, H. Škrobánková, and J. Frydrych, 2014. Syngas Production from Pyrolysis of Nine Composts Obtained from Nonhybrid and Hybrid Perennial Grasses. Scientific World Journal 2014:1–11. doi:10.1155/2014/723092.
  • Indian bureau of Mines (IBM). (2020). Indian iron ore resources & exploitation. https://ibm.gov.in/writereaddata/files/06062017100713IronandSteel2020_2.pdf
  • Kumar, S., P. Sangwan, D. R. M. V, and S. Bidra. 2013. Utilization of rice husk and their ash : A review. Journal of Chemical and Environmental Sciences 1 (5):126–29.
  • Kumar Prajapati, B., A. Anand, S. Gautam, and P. Singh. 2022. Production of hydrogen- and methane-rich gas by stepped pyrolysis of biomass and its utilization in IC engines. Clean Technologies and Environmental Policy 1:3. doi:10.1007/s10098-021-02249-y.
  • Liu, G.-S., V. Strezov, J. A. Lucas, and L. J. Wibberley . 2004. Thermal investigations of direct iron ore reduction with coal. Thermochimica Acta. 410(1–2):133–140. doi:10.1016/S0040-6031(03)00398-8.
  • Man, Y., Feng, J. X., Li, F. J., Ge, Q., Chen, Y. M., & Zhou, J. Z. (2014). Influence of temperature and time on reduction behavior in iron ore-coal composite pellets. Powder Technology, 256, 361–366. https://doi.org/10.1016/j.powtec.2014.02.039
  • Mašlejová, A. 2013. Utilization of biomass in ironmaking. Proceedings of the 22nd International Conference on metallurgy and Materials Metal 2013 16(2013):83–89.
  • Mathieson, J., Rogers, H, Somerville, M, Ridgeway, P, and Jahanshahi, S, et al. (2011). Use of biomass in the iron and steel industry - An Australian perspective. 1st International Conference on Energy Efficiency and CO2 Reduction in the Steel Industry (EECR Steel 2011) - Incorporated in METEC InSteelCon 2011, 27 june-1 July, Dusseldorf, Germany. https://publications.csiro.au/rpr/pub?list=BRO&pid=csiro:EP115427&sb=RECENT&n=10&rpp=50&page=53&tr=5047&dr=all&dc4.browseYear=2011
  • J. Mazumder, and H. I. de Lasa 2016. Catalytic steam gasification of biomass surrogates: Thermodynamics and effect of operating conditions. Chemical Engineering Journal 293:232–42. doi:10.1016/j.cej.2016.02.034.
  • Mishra, A., S. Gautam, and T. Sharma. 2018. Effect of operating parameters on coal gasification. International Journal of Coal Science and Technology 5 (2):113–25. doi:10.1007/s40789-018-0196-3.
  • Mistry, B. 2016a. Properties and industrial applications of rice husk. International Journal of Engineering Science 2677 (10):2677–79.
  • Mistry, B. 2016b. Properties and industrial applications of rice husk. International Journal of Engineering Science and Computing. http://ijesc.org/.
  • Mor, V., D. R, D. Jacob, F. Soumaila, and A. Farnsworth. 2013. Utilization of rice husk and their ash: A review. Research Journal of Chemical and Environmental Sciences 1 (5):7–18. www.aelsindia.com.
  • Mousa, E., C. Wang, J. Riesbeck, and M. Larsson. 2016. Biomass applications in iron and steel industry: An overview of challenges and opportunities. In Renewable and sustainable energy reviews, Vol. 65., 1247–1266. doi:10.1016/j.rser.2016.07.061.
  • Palacios, P., M. Toledo, and M. Cabrera. 2015. Iron ore reduction by methane partial oxidation in a porous media. International Journal of Hydrogen Energy 40 (31):9621–33. doi:10.1016/j.ijhydene.2015.05.058.
  • Park, W.-I., and S.-M. Jung. 2015. Effective use of CH 4 gas as a reducing agent in suspension reduction process. ISIJ International 55 (1):166–74. doi:10.2355/isijinternational.55.166.
  • Priadi, C., S. Adi, H. Dafiqurrohman, A. Wiyono, T. Puspita, S. I. Pratiwi, C. R. Priadi, and A. Surjosatyo. 2017. Investigation of co-gasification characteristics of wood-coconut fibers pellet and rice husk mixtures in a downdraft fixed bed gasifier. Article in International Journal of Technology 7:1207–16. doi:10.14716/ijtech.v8i7.774.
  • Punaykanti, S., and B. B. Pani. 2016 Studies on Odisha based D.R.I manufacturing in the context of automotive components. International Journal of Engineering and Management Research 3:460–68. www.ijemr.net.
  • Qu, Y., L. Xing, L. Shao, Y. Luo, and Z. Zou. 2019. Microstructural characterization and gas-solid reduction kinetics of iron ore fines at high temperature. Powder Technology 355:26–36. doi:10.1016/J.POWTEC.2019.06.048.
  • Rath, S. S., D. S. Rao, A. Tripathy, and S. K. Biswal. 2018. Biomass briquette as an alternative reductant for low grade iron ore resources. Biomass and Bioenergy 108:447–54. doi:10.1016/J.BIOMBIOE.2017.10.045.
  • Rudramuniyappa, M., and J. Huballi (2000). Studies on composite pre-reduced pellets of iron ore fines of Sandur area, Bellary district, Karnataka, India. Processing of Fines (2), 2, 263–68. http://eprints.nmlindia.org/2921/
  • Sandeep Kumar Baliarsingh, B., and B. Mishra. 2008. Kinetics of iron ore reduction by coal and charcoal a thesis submitted in partial fulfillment of the requirements for the degree of bachelor of technology in metallurgical and materials engineering.
  • Scimeca, M., S. Bischetti, H. K. Lamsira, R. Bonfiglio, and E. Bonanno. n.d. Energy dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry. doi:10.4081/ejh.2018.2841.
  • Singh, P., R. K. Singh, P. V. Gokul, S. U. Hasan, and A. N. Sawarkar. 2020. Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. doi:10.1080/15567036.2020.1736215.
  • Sinha, K. M. K., T. Sharma, and D. D. Haldar. 2014. Reduction of iron ore with non coking coal.International Journal of Engineering and Advanced Technology (IJEAT) 3(3):30–33. ISBN .
  • Strezov, V. 2006. Iron ore reduction using sawdust: Experimental analysis and kinetic modelling. Renewable Energy 31 (12):1892–905. doi:10.1016/j.renene.2005.08.032.
  • Sun, G., B. Li, H. Guo, W. Yang, S. Li, and J. Guo. 2020. Thermodynamic study on reduction of iron oxides by H2 + CO + CH4 + N2 mixture at 900 ◦C. Energies 13 (19):5053. doi:10.3390/EN13195053.
  • Takyu, Y., T. Murakami, S. H. Son, and E. Kasai. 2015. Reduction mechanism of composite consisted of coal and hematite ore by volatile matter at 700-1 100 K. ISIJ International 55 (6):1188–96. doi:10.2355/isijinternational.55.1188.
  • Ugheoke, I. B., and O. Mamat. 2012. A critical assessment and new research directions of rice husk silica processing methods and properties. Maejo International Journal of Science and Technology 6 (3):430–48. doi:10.14456/mijst.2012.31.
  • Xu, R., B. Dai, W. Wang, J. Schenk, and Z. Xue. 2018. Effect of iron ore type on the thermal behaviour and kinetics of coal-iron ore briquettes during coking. Fuel Processing Technology 173:11–20. doi:10.1016/j.fuproc.2018.01.006.
  • Yadav, K., M. Tyagi, S. Kumari, and S. Jagadevan. 2019. Influence of process parameters on optimization of biochar fuel characteristics derived from rice husk: A promising alternative solid fuel. Bioenergy Research 12 (4):1052–65. doi:10.1007/s12155-019-10027-4.
  • Zhang, X., S. He, H. Sun, Q. Zhu, J. Li, and H. Li. 2019. Mechanism of surface morphology evolution in the reduction of fine iron ore in a conical fluidized bed reactor. Chemical Engineering Science 2020:115468. doi:10.1016/j.ces.2019.115468.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.