147
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A comparative study on aluminum dust explosion suppression by powder inhibitors

, , , &
Pages 6334-6346 | Received 06 Dec 2021, Accepted 29 Jun 2022, Published online: 10 Jul 2022

References

  • Atzler, F., F. X. Demoulin, M. Lawes, Y. Lee, N. Marquez. 2006. Burning rates and flame oscillations in globally homogeneous two-phase mixtures (flame speed oscillations in droplet cloud flames). Combustion Science and Technology. 178(12):2177–98. doi:10.1080/00102200600626074.
  • Ballantyne, A., and J. B. Moss. 2007. Fine wire thermocouple measurements of fluctuating temperature. Combustion Science and Technology 17 (1–2):63–72. doi:10.1080/00102209708946813.
  • Bu, Y., P. Amyotte, C. Li. 2021. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds. The Journal of Hazardous Materials 404:124119. doi:10.1016/j.jhazmat.2020.124119.
  • Dai, L., L. Hao, W. Kang, W. Xu, N. Shi, H. Wei. 2020. Inhibition of different types of inert dust on aluminum powder explosion. Chinese Journal of Chemical Engineering 28:1941–49. doi:10.1016/j.cjche.2020.02.021.
  • Fan, R., Y. Jiang, W. Li, C. Xiong, R. Qiu. 2019. Investigation of the physical and chemical effects of fire suppression powder NaHCO3 addition on methane-air flames. Fuel 257:116048. doi:10.1016/j.fuel.2019.116048.
  • Huang, C., X. Chen, B. Yuan, H. Zhang, H. Dai, S. He, Y. Zhang, Y. Niu, S. Shen. 2019. Suppression of wood dust explosion by ultrafine magnesium hydroxide. The Journal of Hazardous Materials 378:120723. doi:10.1016/j.jhazmat.2019.05.116.
  • Jiang, H., M. Bi, B. Li, D. Ma, W. Gao. 2019. Flame inhibition of aluminum dust explosion by NaHCO3 and NH4H2PO4. Combustion and Flame 200:97–114. doi:10.1016/j.combustflame.2018.11.016.
  • Jiang, H., M. Bi, Q. Peng, and W. Gao. 2020. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4. Renewable Energy 147:2046–55. doi:10.1016/j.renene.2019.10.026.
  • Jiang, H., M. Bi, J. Zhang, F. Zhao, J. Wang, T. Zhang, J. Xu, Y. Song and W. Gao 2022. Explosion characteristics and mechanism of aluminum-reduced graphene oxide composite powder. Journal of Loss Prevention in the Process Industries 405:117545.
  • Jing, G., S. Guo, Y. Wu, and Y. Wang. 2020. Study on the influence of coal dust concentration on flame propagation characteristics of gas explosion in semiclosed tube. Energy Sources 1795307: 1–15 doi: 10.1080/15567036.2020.1795307.
  • Kuai, N., J. Li, Z. Chen, W. Huang, J. Yuan, and W. Xu. 2011. Experiment-based investigations of magnesium dust explosion characteristics. Journal of Loss Prevention in the Process Industries 24 (4):302–13. doi:10.1016/j.jlp.2011.01.006.
  • Li, B., Y. Li, Y. Dou, Y. Wang, J. Zhao, T. Wang. 2021. SiC/Mn co-doped CaO pellets with enhanced optical and thermal properties for calcium looping thermochemical heat storage. Chemical Engineering Journal 423:130305. doi:10.1016/j.cej.2021.130305.
  • Liu, P., J. Liu, and M. Wang. 2019. Ignition and combustion of nano-sized aluminum particles: A reactive molecular dynamics study. Combustion and Flame 201:276–89. doi:10.1016/j.combustflame.2018.12.033.
  • Martín, J. C. G., S. M. Daly, J. S. A. Brooke, and J. M. C. Plane. 2017. Absorption cross sections and kinetics of formation of AlO at 298 K. Chemical Physics Letters 675:56–62. doi:10.1016/j.cplett.2017.02.087.
  • Pu, Y., J. Hu, T. Yao. 2021. Influence of anodization parameters on film thickness and volume expansion of thick- and large-sized anodic aluminum oxide film. Journal of Materials Science: Materials in Electronics 32:13708–18. doi:10.1007/s10854-021-05948-w.
  • Ruesch, M. D., A. J. McDonald, G. C. Mathews, S. F. Son, C. S. Goldenstein. 2021. Characterization of the influence of aluminum particle size on the temperature of composite-propellant flames using CO absorption and AlO emission spectroscopy. Proceedings of the Combustion Institute 38:4365–72. doi:10.1016/j.proci.2020.06.163.
  • Sanchirico, R., V. D. Sarli, P. Russo, and A. D. Benedetto. 2015. Effect of the nozzle type on the integrity of dust particles in standard explosion tests. Powder Technology 279:203–08. doi:10.1016/j.powtec.2015.04.003.
  • Sarli, V. D., P. Russo, R. Sanchirico, and A. D. Benedetto. 2013. CFD simulations of the effect of dust diameter on the dispersion in the 20 L bomb. Chemical Engineering Transactions 31:727–32.
  • Wei, X., Y. Zhang, G. Wu, X. Zhang, Y. Zhang, X. Wang. 2021. Study on explosion suppression of coal dust with different particle size by shell powder and NaHCO3. Fuel 306:121709. doi:10.1016/j.fuel.2021.121709.
  • Yan, K., and X. B. Meng. 2020. An investigation on the aluminum dustexplosion suppression efficiency and mechanism of a NaHCO3/DE composite powder. Advanced Powder Technology 31:3246–55. doi:10.1016/j.apt.2020.06.014.
  • Yuasa, S., Y. Zhu, and S. Sogo. 1997. Ignition and combustion of aluminum in oxygen/nitrogen mixture streams. Combustion and Flame 108:387–96. doi:10.1016/0010-2180(95)00104-2.
  • Zhang, S., M. Bi, H. Jiang, and W. Gao. 2020. Inhibition evaluation of gas inhibitors in micron-sized aluminum dust explosion. The Journal of Hazardous Materials 393:122524. doi:10.1016/j.jhazmat.2020.122524.
  • Zhi, Y., K. Nima, K. Faisal, and A. Paul. 2015. Dust explosions: A threat to the process industries. Process Safety and Environmental Protection 98:57–71. doi:10.1016/j.psep.2015.06.008.
  • Zhu, Y., S. Shang, H. Jiang, T. Zhang, and W. Gao. 2022. Synthesis of a novel inhibitor and its inhibition mechanism on aluminum dust explosions. Industrial & Engineering Chemistry Research 61 (20):7020–31. doi:10.1021/acs.iecr.2c01185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.