137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation on the oxidation process and mechanism of steel billet under oxygen-enriched combustion atmosphere

, , , &
Pages 6271-6285 | Received 11 Jan 2022, Accepted 29 Jun 2022, Published online: 10 Jul 2022

References

  • Buhre, B. J. P., L. K. Elliott, C. D. Sheng, R. P. Gupta, and T. F. Wall. 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science 31 (4):283–307. doi:10.1016/j.pecs.2005.07.001.
  • Chen, R. Y., and Y. D. Yuen. 2003. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxidation of Metals 59 (5):433–68. doi:10.1023/A:1023685905159.
  • Chungen, Y., and Y. Jinyue. 2016. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Applied Energy and Yan 2016] Has Been Updated. OK?</chg> 162:742–62. doi:10.1016/j.apenergy.2015.10.149.
  • Duan, W., D. Wang, Z. Wang, Y. Zhan, M. Tongtong, and Y. Qingbo. 2021. A novel synergistic method on potential green and high value-added utilization of blast furnace slag. Journal of Cleaner Production 329:129804. doi:10.1016/j.jclepro.2021.129804.
  • Edwin Geo, V., S. Thiyagarajan, T. P. Ankit Sonthalia, S. Awad, F. Aloui, and A. Pugazhendhi. 2021. CO2 reduction in a common rail direct injection engine using the combined effect of low carbon biofuels, hydrogen and a post combustion carbon capture system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. doi:10.1080/15567036.2021.1974128.
  • Fredrik, N., A. Klas, B. Leckner, and J. Filip. 2009. Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science 35 (5):385–97. doi:10.1016/j.pecs.2009.04.002.
  • Fuyong, S., and W. Zhi. 2018. Experimental study on oxidation behavior of Q235b steel in oxygen-enriched combustion atmosphere. Progress in Energy and Combustion Science 89 (5–6):641–50. doi:10.1007/s11085-017-9807-4.
  • Ghoniem, A. F. 2011. Needs, resources and climate change: Clean and efficient conversion technologies. Progress in Energy and Combustion Science 37 (1):15–51. doi:10.1016/j.pecs.2010.02.006.
  • Günter, S., A.-M. Leema, S. Uwe, and M. Jörg. 2011. Oxy-fuel coal combustion – A review of the current state-of-the-art. International Journal of Greenhouse Gas Control 55:16–35.
  • Kondo, Y. 2006. Behaviour of copper and nickel during high temperature oxidation of steel containing them. Materials Science Forum 522:53–60.
  • Lee, VHJ, Gleeson, B., and D. J. Young . 2005. Scaling of carbon steel in simulated reheat furnace atmospheres. Oxidation of Metals 63 (1–2):15–31. doi:10.1007/s11085-005-1949-0.
  • Lei, C., S. Z. Yong, and F. Ghoniem Ahmed. 2012. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science 38 (2):156–214. doi:10.1016/j.pecs.2011.09.003.
  • Ligang, Z. 2011. Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture. 80 High Street, Sawston, Cambridge CB22 3HJ, UK: Woodhead Publishing Limited. ISBN 978-1-84569-671-9.
  • Osei, R., S. Lekakh, and R. O’malley. February 2021. Thermodynamic prediction and experimental verification of multiphase composition of scale formed on reheated alloy steels. Metallurgical and Materials Transactions B 52B(1):393. doi: 10.1007/s11663-020-02023-3.
  • Pacala, S., and R. Socolow. 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305 (5686):968–72. doi:10.1126/science.1100103.
  • Selenz, H. J., and F. Oeters. 1984. A contribution to the scaling of steel in technical flue gases. Arch Eisenhut-tenwes 55 (5):201–08.
  • Stanger, R., T. Wall, R. Spörl, M. Paneru, G. Simon, and W. Max Guenter, Schefflmecht, Denny, McDonald, Kari, Myohanen, Jouni, Ritvanen, Sirpa, Rahiala, Timo, Hyppanen, Jan, Mletzko, Alfons, Kather, Stanley, Santos, et al. 2015. Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control 40:55–125.
  • Steinboeck, A., D. Wild, T. Kiefer, and A. Kugi , et al. 2010. A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media. International Journal of Heat and Mass Transfer. 53(25–26):5933–46. doi:10.1016/j.ijheatmasstransfer.2010.07.029.
  • Terry, W., S. Rohan, and S. Stanley. 2011. Demonstrations of coal-fired oxy-fuel technology for carbon capture and storage and issues with commercial deployment. International Journal of Greenhouse Gas Control 5:5–15. doi:10.1016/j.ijggc.2011.03.014.
  • Toftegaard Maja, B., B. Jacob, A. Jensen Peter, G. Peter, and D. Jensen Anker. 2010. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science 36 (5):581–625. doi:10.1016/j.pecs.2010.02.001.
  • Wagner, C. 1959. Reaktionstypen bei der oxydation von legierun-gen. Z ElektrOchem 63 (7):772–82.
  • Yin, H., S. L. I. Chan, W. Y. D. Yuen, and Young, D. J, et al. 2012. Temperature effects on the oxidation of low carbon steel in N2–H2–H2O at 800–1200 °C. Oxidation of Metals. 77(5–6):742–62. doi:10.1007/s11085-012-9287-5.
  • Zambrano, O. A., J. J. Coronado, and S. A. Rodriguez. 2015. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200 degrees C in air. Surface and Coatings Technology 282:155–62. doi:10.1016/j.surfcoat.2015.10.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.