387
Views
5
CrossRef citations to date
0
Altmetric
Review

Comprehensive review on cogeneration systems for low and medium temperature heat recoveries

&
Pages 6404-6432 | Received 01 Feb 2022, Accepted 24 Jun 2022, Published online: 21 Jul 2022

References

  • https://grid.iamkate.com
  • Abed, H., K. Atashkari, A. Niazmehr, and A. Jamali. 2013. Thermodynamic optimization of combined power and refrigeration cycle using binary organic working fluid. International Journal of Refrigeration 36 (8):2160–68. doi:10.1016/j.ijrefrig.2013.06.013.
  • Abusoglu, A., and M. Kanoglu. 2009. Exergoeconomic analysis and optimization of combined heat and power production: A review. Renewable and Sustainable Energy Reviews 13 (9):2295–308. doi:10.1016/j.rser.2009.05.004.
  • Aguilar-Jimenez, J. A., N. Velazquez, R. Lopez-Zavala, R. Beltran, L. Hernandez-Callejo, L. A. Gonzalez-Uribe, and V. Alonso-Gomez. 2020. Low-temperature multiple-effect desalination/organic Rankine cycle system with a novel integration for fresh water and electrical energy production. Desalination 477:114269. doi:10.1016/j.desal.2019.114269.
  • Akbari, M., S. Mahmoudi, M. Yari, and M. A. Rosen. 2014. Energy and exergy analyses of a new combined cycle for producing electricity and desalinated water using geothermal energy. Sustainability 6 (4):1796–820. doi:10.3390/su6041796.
  • Alkhulaifi, Y. M., E. Baata, F. A. Al-Sulaiman, N. I. Ibrahim, and R. Ben-Mansour. 2021. Performance and exergoeconomic assessment of a novel combined ejector cooling with humidification-dehumidification (HDH) desalination system. Desalination 500:114843. doi:10.1016/j.desal.2020.114843.
  • Araghi, A. H., M. Khiadani, and K. Hooman. 2016. A novel vacuum discharge thermal energy combined desalination and power generation system utilizing R290/R600a. Energy 98:215–24. doi:10.1016/j.energy.2016.01.007.
  • Babaelahi, M., E. Mofidipour, and E. Rafat. 2019. Design, dynamic analysis and control-based exergetic optimization for solar-driven Kalina power plant. Energy 187:115977. doi:10.1016/j.energy.2019.115977.
  • Badami, M., and M. Mura. 2010. Exergetic analysis of an innovative small scale combined cycle cogeneration system. Energy 35 (6):2535–43. doi:10.1016/j.energy.2010.02.053.
  • Barkhordarian, O., A. Behbahaninia, and R. Bahrampoury. 2017. A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels.Energy. Circulation Research 120 (5):816–26. doi:10.1161/CIRCRESAHA.116.309782.
  • Bartela, Ł., J. Kotowicz, and K. Dubiel-Jurgaś. 2018. Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine. Energy 150:601–16. doi:10.1016/j.energy.2018.02.152.
  • Bazmi, A. A., and G. Zahedi. 2011. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review. Renewable and Sustainable Energy Reviews 15 (8):3480–500. doi:10.1016/j.rser.2011.05.003.
  • Behnam, P., M. Faegh, and M. B. Shafii. 2019. Thermodynamic analysis of a novel combined power and refrigeration cycle comprising of EKalina and ejector refrigeration cycles. International Journal of Refrigeration 104:291–301. doi:10.1016/j.ijrefrig.2019.06.002.
  • Biedermanm, B. P., J. Brasz, F. J. Cogswell, J. Mulugeta, and L. Zhang. Inventors; United technologies corporation, assignee. cascaded organic Rankine cycle (ORC) system using waste heat from a reciprocating engine. US patent 0263380. 2010 October 21.
  • Brizi, F., J. L. Silveira, U. Desideri, J. A. Dos Reis, C. E. Tuna, and W. de Queiroz Lamas. 2014. Energetic and economic analysis of a Brazilian compact cogeneration system: Comparison between natural gas and biogas. Renewable and Sustainable Energy Reviews 38:193–211. doi:10.1016/j.rser.2014.05.088.
  • Caglayan, H., and H. Caliskan. 2018. Energy, exergy and sustainability assessments of a cogeneration system for ceramic industry. Applied Thermal Engineering 136:504–15. doi:10.1016/j.applthermaleng.2018.02.064.
  • Cao, L., J. Lou, J. Wang, and Y. Dai. 2018. Exergy analysis and optimization of a combined cooling and power system driven by geothermal energy for ice-making and hydrogen production. Energy Conversion and Management 174:886–96. doi:10.1016/j.enconman.2018.08.067.
  • Chatzopoulou, M. A., and C. N. Markides. 2018. Thermodynamic optimisation of a high-electrical efficiency integrated internal combustion engine–Organic Rankine cycle combined heat and power system. Applied Energy 226:1229–51. doi:10.1016/j.apenergy.2018.06.022.
  • Chauhan, V., P. A. Kishan, and S. Gedupudi. 2019. Thermodynamic analysis of a combined cycle for cold storage and power generation using geothermal heat source. Thermal Science and Engineering Progress 11:19–27. doi:10.1016/j.tsep.2019.03.009.
  • Chen, Y., Z. Guo, J. Wu, Z. Zhang, and J. Hua. 2015. Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle. Energy 90:2028–37. doi:10.1016/j.energy.2015.07.038.
  • Chen, Y., D. Xu, Z. Chen, X. Gao, and W. Han. 2019. Energetic and exergetic analysis of a solar-assisted combined power and cooling (SCPC) system with two different cooling temperature levels. Energy Conversion and Management 182:497–507. doi:10.1016/j.enconman.2018.12.069.
  • Chen, W. H., C. M. Wang, L. H. Saw, A. T. Hoang, and A. A. Bandala. 2021. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization. Energy Conversion and Management 250:114858. doi:10.1016/j.enconman.2021.114858.
  • Dai, Y., J. Wang, and L. Gao. 2009. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle. Applied Thermal Engineering 29 (10):1983–90. doi:10.1016/j.applthermaleng.2008.09.016.
  • Dalala, Z., M. Al-Omari, M. Al-Addous, M. Bdour, Y. Al-Khasawneh, and M. Alkasrawi. 2022. Increased renewable energy penetration in national electrical grids constraints and solutions. Energy 246:123361. doi:10.1016/j.energy.2022.123361.
  • de Oliveira Neto, R., C. A. R. Sotomonte, and C. J. Coronado. 2021. Off-design model of an ORC system for waste heat recovery of an internal combustion engine. Applied Thermal Engineering 195:117188. doi:10.1016/j.applthermaleng.2021.117188.
  • Dehghani, M. J., and C. Yoo. 2020. Three-step modification and optimization of Kalina power-cooling cogeneration based on energy, pinch, and economics analyses. Energy 205:118069. doi:10.1016/j.energy.2020.118069.
  • Dhahad, H. A., H. M. Hussen, P. T. Nguyen, H. Ghaebi, and M. A. Ashraf. 2020. Thermodynamic and thermoeconomic analysis of innovative integration of Kalina and absorption refrigeration cycles for simultaneously cooling and power generation. Energy Conversion and Management 203:112241. doi:10.1016/j.enconman.2019.112241.
  • Diangelakis, N. A., and E. N. Pistikopoulos. 2017. A multi-scale energy systems engineering approach to residential combined heat and power systems. Computers & Chemical Engineering 102:128–38. doi:10.1016/j.compchemeng.2016.10.015.
  • Du, Y., P. Han, X. Qiang, M. Hao, Y. Long, P. Zhao, and Y. Dai. 2018. Off-design performance analysis of a combined cooling and power system driven by low-grade heat source. Energy Conversion and Management 159:327–41. doi:10.1016/j.enconman.2017.12.076.
  • Du, Y., and Y. Dai. 2018. Off-design performance analysis of a power-cooling cogeneration system combining a Kalina cycle with an ejector refrigeration cycle. Energy 161:233–50. doi:10.1016/j.energy.2018.07.106.
  • Ebadollahi, M., H. Rostamzadeh, M. Z. Pedram, H. Ghaebi, and M. Amidpour. 2019. Proposal and multi-criteria optimization of two new combined heating and power systems for the Sabalan geothermal source. Journal of Cleaner Production 229:1065–81. doi:10.1016/j.jclepro.2019.05.022.
  • Ebrahimi, A., B. Ghorbani, and M. Ziabasharhagh. 2020. Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system. Energy 206:117982. doi:10.1016/j.energy.2020.117982.
  • Ebrahimi-Moghadam, A., A. J. Moghadam, and M. Farzaneh-Gord. 2020. Comprehensive techno-economic and environmental sensitivity analysis and multi-objective optimization of a novel heat and power system for natural gas city gate stations. Journal of Cleaner Production 262: 121261.
  • Ebrahimi-Moghadam, A., A. J. Moghadam, M. Farzaneh-Gord, and K. Aliakbari. 2020. Proposal and assessment of a novel combined heat and power system: Energy, exergy, environmental and economic analysis. Energy Conversion and Management 204:112307. doi:10.1016/j.enconman.2019.112307.
  • Ehyaei, M. A., A. Ahmadi, M. E. H. Assad, and M. A. Rosen. 2020. Investigation of an integrated system combining an organic Rankine cycle and absorption chiller driven by geothermal energy: Energy, exergy, and economic analyses and optimization. Journal of Cleaner Production 258:120780. doi:10.1016/j.jclepro.2020.120780.
  • Emadi, M. A., N. Chitgar, O. A. Oyewunmi, and C. N. Markides. 2020. Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery. Applied Energy 261:114384. doi:10.1016/j.apenergy.2019.114384.
  • Emmanuel, M., K. Doubleday, B. Cakir, M. Marković, and B. M. Hodge. 2020. A review of power system planning and operational models for flexibility assessment in high solar energy penetration scenarios. Solar Energy 210:169–80.
  • Eyerer, S., F. Dawo, C. Wieland, and H. Spliethoff. 2020. Advanced ORC architecture for geothermal combined heat and power generation. Energy 205:117967. doi:10.1016/j.energy.2020.117967.
  • Fan, G., Y. Du, H. Li, and Y. Dai. 2021. Off-design behavior investigation of the combined supercritical CO2 and organic Rankine cycle. Energy 237:121529. doi:10.1016/j.energy.2021.121529.
  • Fiaschi, D., A. Lifshitz, G. Manfrida, and D. Tempesti. 2014. An innovative ORC power plant layout for heat and power generation from medium-to low-temperature geothermal resources. Energy Conversion and Management 88:883–93. doi:10.1016/j.enconman.2014.08.058.
  • Frigo, S., and G. Spazzafumo. 2018. Cogeneration of power and substitute of natural gas using biomass and electrolytic hydrogen. International Journal of Hydrogen Energy 43 (26):11696–705. doi:10.1016/j.ijhydene.2018.03.006.
  • Gaia, M., R. Bini, R. Vescovo, and E. Spagnoli. inventors; Cogenerative organic Rankine cycle system. PCT/IB2017/052880. 2017 November 23.
  • Ganesh, N. S., and T. Srinivas. 2013. Thermodynamic assessment of heat source arrangements in Kalina power station. Journal of Energy Engineering 139 (2):99–108. doi:10.1061/(ASCE)EY.1943-7897.0000100.
  • Ganesh, N. S., and K. S. Giridharan. Combined renewable energy based heat, power generation and cooling system and a method thereof. Application No. 201941040473 A. 2019.
  • Gargari, S. G., M. Rahimi, and H. Ghaebi. 2018. Thermodynamic analysis of a novel power-hydrogen cogeneration system. Energy Conversion and Management 171:1093–105. doi:10.1016/j.enconman.2018.06.033.
  • Ghaebi, H., T. Parikhani, and H. Rostamzadeh. 2017. Energy, exergy and thermoeconomic analysis of a novel combined cooling and power system using low-temperature heat source and LNG cold energy recovery. Energy Conversion and Management 150:678–92. doi:10.1016/j.enconman.2017.08.052.
  • Ghaebi, H., T. Parikhani, H. Rostamzadeh, and B. Farhang. 2017. Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles. Energy 139:262–76. doi:10.1016/j.energy.2017.07.154.
  • Ghaebi, H., B. Farhang, T. Parikhani, and H. Rostamzadeh. 2018a. Energy, exergy and exergoeconomic analysis of a cogeneration system for power and hydrogen production purpose based on TRR method and using low grade geothermal source. Geothermics 71:132–45. doi:10.1016/j.geothermics.2017.08.011.
  • Ghaebi, H., T. Parikhani, H. Rostamzadeh, and B. Farhang. 2018b. Proposal and assessment of a novel geothermal combined cooling and power cycle based on Kalina and ejector refrigeration cycles. Applied Thermal Engineering 130:767–81. doi:10.1016/j.applthermaleng.2017.11.067.
  • Ghaebi, H., and H. Rostamzadeh. 2020. Performance comparison of two new cogeneration systems for fresh water and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond. Renewable Energy 156:748–67. doi:10.1016/j.renene.2020.04.043.
  • Ghorbani, B., R. Shirmohammadi, and M. Mehrpooya. 2020. Development of an innovative cogeneration system for fresh water and power production by renewable energy using thermal energy storage system. Sustainable Energy Technologies and Assessments 37:100572. doi:10.1016/j.seta.2019.100572.
  • Goldshtein, L., E. I. I. G. Margolin, Y. Elgart, and M. Goldshtein. Inventors; Method and system of combined for waste heat conversion to electrical energy, heating and cooling. PCT/IL2016/051269. 2016 November 24.
  • Grabner, M., O. Von Morstein, D. Rappold, W. Günster, G. Beysel, and B. Meyer. 2010. Constructability study on a German reference IGCC power plant with and without CO2-capture for hard coal and lignite. Energy Conversion and Management 51 (11):2179–87. doi:10.1016/j.enconman.2010.03.011.
  • Guo, T., H. X. Wang, and S. J. Zhang. 2011. Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources. Energy 36 (5):2639–49. doi:10.1016/j.energy.2011.02.005.
  • Guo, S., Q. Liu, J. Sun, and H. Jin. 2018. A review on the utilization of hybrid renewable energy. Renewable and Sustainable Energy Reviews 91:1121–47. doi:10.1016/j.rser.2018.04.105.
  • Gupta, P. R., A. K. Tiwari, and Z. Said. 2022. Solar organic Rankine cycle and its poly-generation applications–A review. Sustainable Energy Technologies and Assessments 49:101732. doi:10.1016/j.seta.2021.101732.
  • Han, W., Q. Chen, L. Sun, S. Ma, T. Zhao, D. Zheng, and H. Jin. 2014. Experimental studies on a combined refrigeration/power generation system activated by low-grade heat. Energy 74:59–66. doi:10.1016/j.energy.2014.02.097.
  • Hanif, I., B. Aziz, and I. S. Chaudhry. 2019. Carbon emissions across the spectrum of renewable and non-renewable energy use in developing economies of Asia. Renewable Energy 143:586–95. doi:10.1016/j.renene.2019.05.032.
  • He, W. F., F. Wu, Y. P. Kong, T. Wen, J. J. Chen, and D. Han. 2019. Parametric analysis of a power-water cogeneration system based on single-extraction organic Rankine cycle. Applied Thermal Engineering 148:382–90. doi:10.1016/j.applthermaleng.2018.11.070.
  • Heberle, F., and D. Brüggemann. 2010. Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation. Applied Thermal Engineering 30 (11–12):1326–32. doi:10.1016/j.applthermaleng.2010.02.012.
  • Higa, M., E. Y. Yamamoto, J. C. D. de Oliveira, and W. A. S. Conceição. 2018. Evaluation of the integration of an ammonia-water power cycle in an absorption refrigeration system of an industrial plant. Energy Conversion and Management 178:265–76. doi:10.1016/j.enconman.2018.10.041.
  • Hoang, A. T., and X. P. Nguyen. 2021. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production 305:127161.
  • Hosseinpour, J., A. Chitsaz, B. Eisavi, and M. Yari. 2018. Investigation on performance of an integrated SOFC-Goswami system using wood gasification. Energy 148:614–28. doi:10.1016/j.energy.2018.01.162.
  • Hou, S., Y. Zhou, L. Yu, F. Zhang, S. Cao, and Y. Wu. 2018. Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle. Energy Conversion and Management 172:457–71. doi:10.1016/j.enconman.2018.07.042.
  • Hua, J., Y. Chen, Y. Wang, and A. P. Roskilly. 2014. Thermodynamic analysis of ammonia–water power/chilling cogeneration cycle with low-grade waste heat. Applied Thermal Engineering 64 (1–2):483–90. doi:10.1016/j.applthermaleng.2013.12.043.
  • International Energy Agency. 2021b. Global energy review 2020. OECD Publishing.
  • Isa, N. M., C. W. Tan, and A. H. M. Yatim. 2018. A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system. Renewable and Sustainable Energy Reviews 81:2236–63. doi:10.1016/j.rser.2017.06.034.
  • Jana, K., A. Ray, M. M. Majoumerd, M. Assadi, and S. De. 2017. Polygeneration as a future sustainable energy solution–A comprehensive review. Applied Energy 202:88–111. doi:10.1016/j.apenergy.2017.05.129.
  • Jawahar, C. P., R. Saravanan, J. C. Bruno, and A. Coronas. 2013. Simulation studies on gax based Kalina cycle for both power and cooling applications. Applied Thermal Engineering 50 (2):1522–29. doi:10.1016/j.applthermaleng.2011.11.004.
  • Jiang, L., L. W. Wang, X. F. Zhang, C. Z. Liu, and R. Z. Wang. 2015. Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage. Renewable Energy 83:1250–59. doi:10.1016/j.renene.2015.06.028.
  • Jiang, L., L. W. Wang, C. Z. Liu, and R. Z. Wang. 2016. Experimental study on a resorption system for power and refrigeration cogeneration. Energy 97:182–90. doi:10.1016/j.energy.2015.12.128.
  • Jiang, L., H. Lu, R. Wang, L. Wang, L. Gong, Y. Lu, and A. P. Roskilly. 2017. Investigation on an innovative cascading cycle for power and refrigeration cogeneration. Energy Conversion and Management 145:20–29. doi:10.1016/j.enconman.2017.04.086.
  • Jiang, L., A. P. Roskilly, R. Z. Wang, and L. W. Wang. 2018. Analysis on innovative resorption cycle for power and refrigeration cogeneration. Applied Energy 218:10–21. doi:10.1016/j.apenergy.2018.02.174.
  • Jing, X., and D. Zheng. 2014. Effect of cycle coupling-configuration on energy cascade utilization for a new power and cooling cogeneration cycle. Energy Conversion and Management 78:58–64. doi:10.1016/j.enconman.2013.10.038.
  • Jurčević, M., S. Nižetić, D. Čoko, A. T. Hoang, and A. M. Papadopoulos. 2022. Experimental investigation of novel hybrid phase change materials. Clean Technologies and Environmental Policy 24 (1):201–12. doi:10.1007/s10098-021-02106-y.
  • Kalina, J., and M. Świerzewski. 2019. Identification of ORC unit operation in biomass-fired cogeneration system. Renewable Energy 142:400–14. doi:10.1016/j.renene.2019.04.080.
  • Kalina, J., M. Świerzewski, and R. Strzałka. 2019. Operational experiences of municipal heating plants with biomass-fired ORC cogeneration units. Energy Conversion and Management 181:544–61. doi:10.1016/j.enconman.2018.12.045.
  • Khaliq, A. 2017. Energetic and exergetic performance investigation of a solar based integrated system for cogeneration of power and cooling. Applied Thermal Engineering 112:1305–16. doi:10.1016/j.applthermaleng.2016.10.127.
  • Khan, J., and M. H. Arsalan. 2016. Solar power technologies for sustainable electricity generation–A review. Renewable and Sustainable Energy Reviews 55:414–25. doi:10.1016/j.rser.2015.10.135.
  • Kılkış, Ş., G. Krajačić, N. Duić, M. A. Rosen, and M. Ahmad Al-Nimr. 2021. Accelerating mitigation of climate change with sustainable development of energy, water and environment systems. Energy Conversion and Management 245:114606. doi:10.1016/j.enconman.2021.114606.
  • Kim, K. H., and H. Perez-Blanco. 2015. Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration. Applied Thermal Engineering 91:964–74. doi:10.1016/j.applthermaleng.2015.04.062.
  • Kordlar, M. A., and S. M. S. Mahmoudi. 2017. Exergeoconomic analysis and optimization of a novel cogeneration system producing power and refrigeration. Energy Conversion and Management 134:208–20. doi:10.1016/j.enconman.2016.12.007.
  • Kosowski, K., K. Tucki, M. Piwowarski, R. Stępien, O. Orynycz, and W. Włodarski. 2019. Thermodynamic cycle concepts for high-efficiency power plants. part B: prosumer and distributed power industry. Sustainability 11 (9):2647. doi:10.3390/su11092647.
  • Koti Reddy, B., and A. K. Singh. 2021. Optimal operation of a photovoltaic integrated captive cogeneration plant with a utility grid using optimization and machine learning prediction methods. Energies 14 (16):4935. doi:10.3390/en14164935.
  • Kumar, G. P., R. Saravanan, and A. Coronas. 2017. Experimental studies on combined cooling and power system driven by low-grade heat sources. Energy 128:801–12. doi:10.1016/j.energy.2017.04.066.
  • Kumar, A., and D. Rakshit. 2021. A critical review on waste heat recovery utilization with special focus on organic Rankine cycle applications. Cleaner Engineering and Technology 5:100292. doi:10.1016/j.clet.2021.100292.
  • Lake, A., B. Rezaie, and S. Beyerlein. 2017. Review of district heating and cooling systems for a sustainable future. Renewable and Sustainable Energy Reviews 67:417–25. doi:10.1016/j.rser.2016.09.061.
  • Li, W., Y. Hao, H. Wang, H. Liu, and J. Sui. 2017. Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage. Applied Energy 206:1523–31. doi:10.1016/j.apenergy.2017.09.111.
  • Li, B., and S. S. Wang. 2019. Thermo-economic analysis and optimization of a novel carbon dioxide based combined cooling and power system. Energy Conversion and Management 199:112048. doi:10.1016/j.enconman.2019.112048.
  • Li, B., S. S. Wang, K. Wang, and L. Song. 2020a. Thermo-economic analysis of a combined cooling, heating and power system based on carbon dioxide power cycle and absorption chiller for waste heat recovery of gas turbine. Energy Conversion and Management 224:113372. doi:10.1016/j.enconman.2020.113372.
  • Li, Y., Y. Liu, G. Zhang, and Y. Yang. 2020b. Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat. Energy 199:117479. doi:10.1016/j.energy.2020.117479.
  • Li, Z., S. Khanmohammadi, S. Khanmohammadi, A. A. Al-Rashed, P. Ahmadi, and M. Afrand. 2020c. 3-E analysis and optimization of an organic rankine flash cycle integrated with a PEM fuel cell and geothermal energy. International Journal of Hydrogen Energy 45 (3):2168–85. doi:10.1016/j.ijhydene.2019.09.233.
  • Liang, Y., G. Shu, H. Tian, X. Liang, H. Wei, and L. Liu. 2013. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship. Energy Conversion and Management 76:1053–60. doi:10.1016/j.enconman.2013.08.056.
  • Liao, G., L. Liu, F. Zhang, E. Jiaqiang, and J. Chen. 2019. A novel combined cooling-heating and power (CCHP) system integrated organic Rankine cycle for waste heat recovery of bottom slag in coal-fired plants. Energy Conversion and Management 186:380–92. doi:10.1016/j.enconman.2019.02.072.
  • Liu, M., and N. Zhang. 2007. Proposal and analysis of a novel ammonia water cycle for power and refrigeration cogeneration. Energy 32 (6):961–70. doi:10.1016/j.energy.2006.09.012.
  • Liu, X., M. Q. Nguyen, and M. He. 2020. Performance analysis and optimization of an electricity-cooling cogeneration system for waste heat recovery of marine engine. Energy Conversion and Management 214:112887. doi:10.1016/j.enconman.2020.112887.
  • Lopez-Villada, J., D. S. Ayou, J. C. Bruno, and A. Coronas. 2014. Modelling, simulation and analysis of solar absorption power-cooling systems. International Journal of Refrigeration 39:125–36. doi:10.1016/j.ijrefrig.2013.11.004.
  • Lu, Y., Y. Wang, C. Dong, L. Wang, and A. P. Roskilly. 2015. Design and assessment on a novel integrated system for power and refrigeration using waste heat from diesel engine. Applied Thermal Engineering 91:591–99. doi:10.1016/j.applthermaleng.2015.08.057.
  • Mahdavi, N., and S. Khalilarya. 2019. Comprehensive thermodynamic investigation of three cogeneration systems including GT-HRSG/RORC as the base system, intermediate system and solar hybridized system. Energy 181:1252–72. doi:10.1016/j.energy.2019.06.001.
  • Mahmoudi, S. M. S., and M. A. Kordlar. 2018. A new flexible geothermal based cogeneration system producing power and refrigeration. Renewable Energy 123:499–512. doi:10.1016/j.renene.2018.02.060.
  • Manesh, M. K., S. M. Rabeti, M. Nourpour, and Z. Said. 2022. Energy, exergy, exergoeconomic, and exergoenvironmental analysis of an innovative solar-geothermal-gas driven polygeneration system for combined power, hydrogen, hot water, and fresh water production. Sustainable Energy Technologies and Assessments 51:101861. doi:10.1016/j.seta.2021.101861.
  • Mendoza, L. C., D. S. Ayou, J. Navarro-Esbrí, J. C. Bruno, and A. Coronas. 2014. Small capacity absorption systems for cooling and power with a scroll expander and ammonia based working fluids. Applied Thermal Engineering 72 (2):258–65. doi:10.1016/j.applthermaleng.2014.06.019.
  • Meng, N., T. Li, Y. Jia, H. Qin, Q. Liu, W. Zhao, and G. Lei. 2020. Techno-economic performance comparison of enhanced geothermal system with typical cycle configurations for combined heating and power. Energy Conversion and Management 205:112409. doi:10.1016/j.enconman.2019.112409.
  • Nemati, A., H. Nami, F. Ranjbar, and M. Yari. 2017. A comparative thermodynamic analysis of ORC and Kalina cycles for waste heat recovery: A case study for CGAM cogeneration system. Case Studies in Thermal Engineering 9:1–13. doi:10.1016/j.csite.2016.11.003.
  • Nemati, A., M. Sadeghi, and M. Yari. 2017. Exergoeconomic analysis and multi-objective optimization of a marine engine waste heat driven RO desalination system integrated with an organic Rankine cycle using zeotropic working fluid. Desalination 422:113–23. doi:10.1016/j.desal.2017.08.012.
  • Ogriseck, S. 2009. Integration of Kalina cycle in a combined heat and power plant, a case study. Applied Thermal Engineering 29 (14–15):2843–48. doi:10.1016/j.applthermaleng.2009.02.006.
  • Oyekale, J., M. Petrollese, F. Heberle, D. Brüggemann, and G. Cau. 2020. Exergetic and integrated exergoeconomic assessments of a hybrid solar-biomass organic Rankine cycle cogeneration plant. Energy Conversion and Management 215:112905. doi:10.1016/j.enconman.2020.112905.
  • Padilla, R. V., G. Demirkaya, D. Y. Goswami, E. Stefanakos, and M. M. Rahman. 2010. Analysis of power and cooling cogeneration using ammonia-water mixture. Energy 35 (12):4649–57. doi:10.1016/j.energy.2010.09.042.
  • Pan, M., F. Lu, Y. Zhu, G. Huang, J. Yin, F. Huang, G. Chen, and Z. Chen. 2020. Thermodynamic, exergoeconomic and multi-objective optimization analysis of new ORC and heat pump system for waste heat recovery in waste-to-energy combined heat and power plant. Energy Conversion and Management 222:113200. doi:10.1016/j.enconman.2020.113200.
  • Pantaleo, A. M., J. Fordham, O. A. Oyewunmi, P. De Palma, and C. N. Markides. 2018. Integrating cogeneration and intermittent waste-heat recovery in food processing: Microturbines vs. ORC Systems in the Coffee Roasting Industry. Applied Energy 225:782–96.
  • Patel, B., N. B. Desai, and S. S. Kachhwaha. 2017. Optimization of waste heat based organic Rankine cycle powered cascaded vapor compression-absorption refrigeration system. Energy Conversion and Management 154:576–90. doi:10.1016/j.enconman.2017.11.045.
  • Pavlovic, S., E. Bellos, and Z. Said. 2021. Cogeneration system driven by solar dish concentrators. Environmental Progress & Sustainable Energy 40 (5):e13644. doi:10.1002/ep.13644.
  • Peris, B., J. Navarro-Esbrí, F. Moles, J. P. Martí, and A. Mota-Babiloni. 2015. Experimental characterization of an organic Rankine cycle (ORC) for micro-scale CHP applications. Applied Thermal Engineering 79:1–8. doi:10.1016/j.applthermaleng.2015.01.020.
  • Rashidi, J., P. Ifaei, I. J. Esfahani, A. Ataei, and C. K. Yoo. 2016. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles. Energy Conversion and Management 127:170–86. doi:10.1016/j.enconman.2016.09.014.
  • Rashidi, J., and C. K. Yoo. 2017. Exergetic and exergoeconomic studies of two highly efficient power-cooling cogeneration systems based on the Kalina and absorption refrigeration cycles. Applied Thermal Engineering 124:1023–37. doi:10.1016/j.applthermaleng.2017.05.195.
  • Ren, S., X. Feng, and M. Yang. 2020. Emergy evaluation of power generation systems. Energy Conversion and Management 211:112749. doi:10.1016/j.enconman.2020.112749.
  • Robison, P., M. Sengupta, and D. Rauch. 2015. Intelligent energy industrial systems 4.0. It Professional 17 (3):17–24. doi:10.1109/MITP.2015.48.
  • Rostamzadeh, H., H. Ghaebi, S. Vosoughi, and J. Jannatkhah. 2018. Thermodynamic and thermoeconomic analysis and optimization of a novel dual-loop power/refrigeration cycle. Applied Thermal Engineering 138:1–17. doi:10.1016/j.applthermaleng.2018.04.031.
  • Rostamzadeh, H., H. Ghaebi, and T. Parikhani. 2018. Thermodynamic and thermoeconomic analysis of a novel combined cooling and power (CCP) cycle. Applied Thermal Engineering 139:474–87. doi:10.1016/j.applthermaleng.2018.05.001.
  • Said, Z., L. S. Sundar, A. K. Tiwari, H. M. Ali, M. Sheikholeslami, E. Bellos, and H. Babar. 2021. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Physics Reports.
  • Said, Z., P. Sharma, A. K. Tiwari, V. G. Bui, V. G. Bui, A. T. Hoang, and A. T. Hoang. 2022. Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale organic rankine cycle using hybrid nanofluid. Journal of Cleaner Production 360:132194. doi:10.1016/j.jclepro.2022.132194.
  • Seckin, C. 2018. Thermodynamic analysis of a combined power/refrigeration cycle: Combination of Kalina cycle and ejector refrigeration cycle. Energy Conversion and Management 157:631–43. doi:10.1016/j.enconman.2017.12.047.
  • Seyfouri, Z., M. Ameri, and M. A. Mehrabian. 2018. Exergo-economic analysis of a low-temperature geothermal-fed combined cooling and power system. Applied Thermal Engineering 145:528–40. doi:10.1016/j.applthermaleng.2018.09.072.
  • Shankar, R., and T. Srinivas. 2018. Performance investigation of Kalina cooling cogeneration cycles. International Journal of Refrigeration 86:163–85. doi:10.1016/j.ijrefrig.2017.11.019.
  • Shankar Ganesh, N., S. Mahendiran, M. D. Manivannan, and N. Keerthivarman. Combined thermodynamic cycle based power generation system and A method thereof. Application No. 201941009276. 2019
  • Shankar Ganesh, N., M. D. Manivannan, and A. R. Pradeep Kumar. Integrated organic Rankine cycle power generation and ejector refrigeration systems using waste heat recovery from multifuel research engine and A method thereof. Application No. 202241004714 A. 2022. METHOD THEREOF.
  • Sharkar, R., and T. Srinivas. 2018. Novel cooling augmented cogeneration cycle. International Journal of Refrigeration 91:146–57. doi:10.1016/j.ijrefrig.2018.05.026.
  • Sharma, N., U. Singh, and S. S. Mahapatra. 2019. Prediction of cost and emission from Indian coal-fired power plants with CO2 capture and storage using artificial intelligence techniques. Frontiers in Energy 13 (1):149–62. doi:10.1007/s11708-017-0482-6.
  • Sharma, P. 2020. Gene expression programming-based model prediction of performance and emission characteristics of a diesel engine fueled with linseed oil biodiesel/diesel blends: An artificial intelligence approach. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–15.
  • Sharma, P., and A. K. Sharma. 2021. Application of response surface methodology for optimization of fuel injection parameters of a dual fuel engine fuelled with producer gas-biodiesel blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18.
  • Sharma, P., A. Chhillar, Z. Said, and S. Memon. 2021. Exploring the exhaust emission and efficiency of algal biodiesel powered compression ignition engine: application of box–behnken and desirability based multi-objective response surface methodology. Energies 14 (18):5968. doi:10.3390/en14185968.
  • Sharma, P. 2022. Prediction-optimization of the effects of di-tert butyl peroxide-biodiesel blends on engine performance and emissions using multi-objective response surface methodology. Journal of Energy Resources Technology 144:7. doi:10.1115/1.4052237.
  • Shokati, N., F. Ranjbar, and M. Yari. 2018. A comprehensive exergoeconomic analysis of absorption power and cooling cogeneration cycles based on Kalina, part 1: Simulation. Energy Conversion and Management 158:437–59. doi:10.1016/j.enconman.2017.12.086.
  • Shokati, N., and S. Khanahmadzadeh. 2018. The effect of different combinations of ammonia-water Rankine and absorption refrigeration cycles on the exergoeconomic performance of the cogeneration cycle. Applied Thermal Engineering 141:1141–60. doi:10.1016/j.applthermaleng.2018.06.052.
  • Singh, O. K. 2016. Performance enhancement of combined cycle power plant using inlet air-cooling by exhaust heat operated ammonia-water absorption refrigeration system. Applied Energy 180:867–79. doi:10.1016/j.apenergy.2016.08.042.
  • Singh, O. K. 2020. Application of Kalina cycle for augmenting performance of bagasse-fired cogeneration plant of sugar industry. Fuel 267:117176. doi:10.1016/j.fuel.2020.117176.
  • Situmorang, Y. A., Z. Zhao, A. Yoshida, A. Abudula, and G. Guan. 2020. Small-scale biomass gasification systems for power generation (< 200 kW class): A review. Renewable and Sustainable Energy Reviews 117:109486.
  • Souza, R. J., C. A. Dos Santos, A. A. Ochoa, A. S. Marques, J. L. Neto, and P. S. Michima. 2020 August 1. Proposal and 3E (energy, exergy, and exergoeconomic) assessment of a cogeneration system using an organic Rankine cycle and an Absorption Refrigeration System in the Northeast Brazil: Thermodynamic investigation of a facility case study. Energy Conversion and Management 217: 113002. doi:10.1016/j.enconman.2020.113002.
  • Sun, L., W. Han, X. Jing, D. Zheng, and H. Jin. 2013a. A power and cooling cogeneration system using mid/low-temperature heat source. Applied Energy 112:886–97. doi:10.1016/j.apenergy.2013.03.049.
  • Sun, L., W. Han, D. Zheng, and H. Jin. 2013b. Assessment of an ammonia–water power/cooling cogeneration system with adjustable solution concentration. Applied Thermal Engineering 61 (2):443–50. doi:10.1016/j.applthermaleng.2013.08.026.
  • Swierzewski, M., and J. Kalina. 2020. Optimisation of biomass-fired cogeneration plants using ORC technology. Renewable Energy 159:195–214. doi:10.1016/j.renene.2020.05.155.
  • Takeshita, K., Y. Amano, and T. Hashizume. 2005. Experimental study of advanced cogeneration system with ammonia–water mixture cycles at bottoming. Energy 30 (2–4):247–60. doi:10.1016/j.energy.2004.05.007.
  • Takleh, H. R., and V. Zare. 2019. Employing thermoelectric generator and booster compressor for performance improvement of a geothermal driven combined power and ejector-refrigeration cycle. Energy Conversion and Management 186:120–30. doi:10.1016/j.enconman.2019.02.047.
  • Talluri, L., O. Dumont, G. Manfrida, V. Lemort, and D. Fiaschi. 2020. Experimental investigation of an organic Rankine cycle Tesla turbine working with R1233zd (E). Applied Thermal Engineering 174:115293. doi:10.1016/j.applthermaleng.2020.115293.
  • Tashtoush, B., and A. B. R. Algharbawi. 2019. Parametric study of a novel hybrid solar variable geometry ejector cooling with organic rankine cycles. Energy Conversion and Management 198:111910. doi:10.1016/j.enconman.2019.111910.
  • Toujeni, N., N. Bouaziz, and L. Kairaouani. 2017. Energetic investigation of a new combined ORC-VCC system for cogeneration. Energy Procedia 139:670–75. doi:10.1016/j.egypro.2017.11.270.
  • Vera, D., A. Baccioli, F. Jurado, and U. Desideri. 2020. Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification. Renewable Energy 162:1399–414. doi:10.1016/j.renene.2020.07.074.
  • Vialetto, G., and M. Noro. 2020. An innovative approach to design cogeneration systems based on big data analysis and use of clustering methods. Energy Conversion and Management 214:112901. doi:10.1016/j.enconman.2020.112901.
  • Vidal, A., R. Best, R. Rivero, and J. Cervantes. 2006. Analysis of a combined power and refrigeration cycle by the exergy method. Energy 31 (15):3401–14. doi:10.1016/j.energy.2006.03.001.
  • Wagar, W. R., C. Zamfirescu, and I. Dincer. 2010. Thermodynamic performance assessment of an ammonia–water Rankine cycle for power and heat production. Energy Conversion and Management 51 (12):2501–09. doi:10.1016/j.enconman.2010.05.014.
  • Wang, J., Y. Dai, and L. Gao. 2008. Parametric analysis and optimization for a combined power and refrigeration cycle. Applied Energy 85 (11):1071–85. doi:10.1016/j.apenergy.2008.02.014.
  • Wang, J., Y. Dai, and L. Gao. 2009. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry. Applied Energy 86 (6):941–48. doi:10.1016/j.apenergy.2008.09.001.
  • Wang, J., Y. Dai, T. Zhang, and S. Ma. 2009. Parametric analysis for a new combined power and ejector–absorption refrigeration cycle. Energy 34 (10):1587–93. doi:10.1016/j.energy.2009.07.004.
  • Wang, J., Y. Dai, and Z. Sun. 2009. A theoretical study on a novel combined power and ejector refrigeration cycle. International Journal of Refrigeration 32 (6):1186–94. doi:10.1016/j.ijrefrig.2009.01.021.
  • Wang, L., F. Ziegler, A. P. Roskilly, R. Wang, and Y. Wang. 2013. A resorption cycle for the cogeneration of electricity and refrigeration. Applied Energy 106:56–64. doi:10.1016/j.apenergy.2013.01.041.
  • Wang, J., J. Wang, P. Zhao, and Y. Dai. 2016. Thermodynamic analysis of a new combined cooling and power system using ammonia–water mixture. Energy Conversion and Management 117:335–42. doi:10.1016/j.enconman.2016.03.019.
  • Wang, J., J. Wang, P. Zhao, and Y. Dai. 2019. Proposal and thermodynamic assessment of a new ammonia-water based combined heating and power (CHP) system. Energy Conversion and Management 184:277–89. doi:10.1016/j.enconman.2019.01.062.
  • Wang, N., S. Zhang, Z. Fei, W. Zhang, L. Shao, and F. Sardari. 2020. Thermodynamic performance analysis a power and cooling generation system based on geothermal flash, organic Rankine cycles, and ejector refrigeration cycle; application of zeotropic mixtures. Sustainable Energy Technologies and Assessments 40:100749. doi:10.1016/j.seta.2020.100749.
  • Wang, Y., L. Zhu, Y. He, Q. Zhou, and Q. Hao. 2021. Tech-economic assessment of chemical looping combustion coupled with the combined supercritical CO2 Brayton cycle and ORC for power generation. Journal of the Taiwan Institute of Chemical Engineers 129:197–206. doi:10.1016/j.jtice.2021.09.010.
  • Wang, Z., X. Mo, P. Qin, Z. Zhao, and T. Ouyang. 2022. Multi-dimensional assessment and multi-objective optimization of electricity-cooling cogeneration system driven by marine diesel engine waste heat. Journal of Cleaner Production 334:130187. doi:10.1016/j.jclepro.2021.130187.
  • Wilailak, S., J. H. Yang, C. G. Heo, K. S. Kim, S. K. Bang, I. H. Seo, U. Zahid, and C. J. Lee. 2021. Thermo-economic analysis of phosphoric acid fuel-cell (PAFC) integrated with organic ranking cycle (ORC). Energy 220:119744. doi:10.1016/j.energy.2020.119744.
  • Xia, J., J. Wang, J. Lou, P. Zhao, and Y. Dai. 2016. Thermo-economic analysis and optimization of a combined cooling and power (CCP) system for engine waste heat recovery. Energy Conversion and Management 128:303–16. doi:10.1016/j.enconman.2016.09.086.
  • Yang, X., N. Zheng, L. Zhao, S. Deng, H. Li, and Z. Yu. 2016. Analysis of a novel combined power and ejector-refrigeration cycle. Energy Conversion and Management 108:266–74. doi:10.1016/j.enconman.2015.11.019.
  • Yang, T., W. P. King, and N. Miljkovic. 2021. Phase change material-based thermal energy storage. Cell Reports Physical Science 2 (8):100540. doi:10.1016/j.xcrp.2021.100540.
  • Yin, J., Z. Yu, C. Zhang, M. Tian, and J. Han. 2018a. Thermodynamic analysis and multi-objective optimization of a novel power/cooling cogeneration system for low-grade heat sources. Energy Conversion and Management 166:64–73. doi:10.1016/j.enconman.2018.04.028.
  • Yin, J., Z. Yu, C. Zhang, M. Tian, and J. Han. 2018b. Thermodynamic analysis of a novel combined cooling and power system driven by low-grade heat sources. Energy 156:319–27. doi:10.1016/j.energy.2018.05.070.
  • Yu, Z., J. Han, H. Liu, and H. Zhao. 2014. Theoretical study on a novel ammonia–water cogeneration system with adjustable cooling to power ratios. Applied Energy 122:53–61. doi:10.1016/j.apenergy.2014.02.010.
  • Yu, H., X. Feng, and Y. Wang. 2016. Working fluid selection for organic Rankine cycle (ORC) considering the characteristics of waste heat sources. Industrial & Engineering Chemistry Research 55 (5):1309–21. doi:10.1021/acs.iecr.5b02277.
  • Yu, Z., C. Feng, Y. Lai, G. Xu, and D. Wang. 2022. Performance assessment and optimization of two novel cogeneration systems integrating proton exchange membrane fuel cell with organic flash cycle for low temperature geothermal heat recovery. Energy 243:122725. doi:10.1016/j.energy.2021.122725.
  • Yue, C., D. Han, W. Pu, and W. He. 2016. Parametric analysis of a vehicle power and cooling/heating cogeneration system. Energy 115:800–10. doi:10.1016/j.energy.2016.09.072.
  • Zare, V., S. M. S. Mahmoudi, and M. Yari. 2012. Ammonia–water cogeneration cycle for utilizing waste heat from the GT-MHR plant. Applied Thermal Engineering 48:176–85. doi:10.1016/j.applthermaleng.2012.05.009.
  • Zare, V., S. S. Mahmoudi, M. Yari, and M. Amidpour. 2012. Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle. Energy 47 (1):271–83. doi:10.1016/j.energy.2012.09.002.
  • Zhang, Z., Z. Guo, Y. Chen, J. Wu, and J. Hua. 2015. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle. Energy Conversion and Management 92:517–22. doi:10.1016/j.enconman.2014.12.084.
  • Zhang, L., M. Chennells, and X. Xia. 2018. A power dispatch model for a ferrochrome plant heat recovery cogeneration system. Applied Energy 227:180–89. doi:10.1016/j.apenergy.2017.08.019.
  • Zhang, S., Y. Chen, J. Wu, Z. Zhu, and F. Fang. 2019. Thermodynamic analysis on a Kalina cycle based power and chilling refrigeration cogeneration cycle. Applied Thermal Engineering 161:114077. doi:10.1016/j.applthermaleng.2019.114077.
  • Zhao, Y., J. Wang, L. Cao, and Y. Wang. 2016. Comprehensive analysis and parametric optimization of a CCP (Combined cooling and power) system driven by geothermal source. Energy 97:470–87. doi:10.1016/j.energy.2016.01.003.
  • Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., and Wei, L. 2021a. Global energy review 2021. IEA.
  • Zhu, Y., W. Li, J. Li, H. Li, Y. Wang, and S. Li. 2020. Thermodynamic analysis and economic assessment of biomass-fired organic Rankine cycle combined heat and power system integrated with CO2 capture. Energy Conversion and Management 204:112310. doi:10.1016/j.enconman.2019.112310.
  • Zhu, H., G. Xie, H. Yuan, and S. Nizetic. 2022. Thermodynamic assessment of combined supercritical CO2 cycle power systems with organic Rankine cycle or Kalina cycle. Sustainable Energy Technologies and Assessments 52:102166. doi:10.1016/j.seta.2022.102166.
  • Zymełka, P., and M. Szega. 2021. Short-term scheduling of gas-fired CHP plant with thermal storage using optimization algorithm and forecasting models. Energy Conversion and Management 231:113860. doi:10.1016/j.enconman.2021.113860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.