172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of heat source distribution optimization on gallium heat transfer characteristics in a annular tube based on MLA and CFD

ORCID Icon, , , &
Pages 6347-6361 | Received 10 Mar 2022, Accepted 29 Jun 2022, Published online: 10 Jul 2022

References

  • Alazwari, M.A., N.H. Abu-Hamdeh, A. Khoshaim, A.I. Ashour, O.K. Nusier, and A. Karimipour. 2021. Effects of examine the phase change material through applying the solar collectors: Exergy analysis of an air handling unit equipped with the heat recovery unit[J]. Journal of Energy Storage 41: 103002. doi:10.1016/j.est.2021.103002.
  • Bhamare, D.K., P. Saikia, M.K. Rathod, D. Rakshit, and J. Banerjee. 2021. A machine learning and deep learning based approach to predict the thermal performance of phase change material integrated building envelope[J]. Building and Environment 199: 107927. doi:10.1016/j.buildenv.2021.107927.
  • Chandra, L., R. Ferry, H. Michiel, and B. Jonker. 2009. A stepwise development and validation of a RANS based CFD modelling approach for the hydraulic and thermal-hydraulic analyses of liquid metal flow in a fuel assembly[J]. Nuclear Engineering and Design. 239 (10):1988–2003. doi:10.1016/j.nucengdes.2009.05.022.
  • Da Silva, A.-K., and B. Adrian. 2005. Constructal multi-scale structure for maximal heat transfer density in natural convection[J]. International Journal of Heat and Fluid Flow 26 (1):34–44. doi:10.1016/j.ijheatfluidflow.2004.05.002.
  • Deng, Y., Y. Jiang, and L. Jing. 2021. Low-melting-point liquid metal convective heat transfer: A review[J]. Applied Thermal Engineering 193: 117021. doi:10.1016/j.applthermaleng.2021.117021.
  • Deng, Y., Z. Manman, Y. Jiang, and J. Liu. 2022. Two-stage multichannel liquid–metal cooling system for thermal management of high-heat-flux-density chip array[J]. Energy Conversion and Management 259: 115591. doi:10.1016/j.enconman.2022.115591.
  • Hajmohammadi, M.-R., M. Rahmani, A. Campo, and O.J. Shariatzadeh. 2014. Optimal design of unequal heat flux elements for optimized heat transfer inside a rectangular duct[J]. Energy 68: 609–16. doi:10.1016/j.energy.2014.02.011.
  • Inc. ANSYS, ANSYS Fluent Theory Guide[Z], 2021.
  • Kramer. 2016. Genetic algorithm essentials[M]. Oldenburg, Germany: Springer.
  • Mohammadpour, J., S. Fatemeh, S. Mohsen, M. Mojtaba, and L. Ann. 2021. Optimization of nanofluid heat transfer in a microchannel heat sink with multiple synthetic jets based on CFD-DPM and MLA[J]. International Journal of Thermal Sciences 167: 107008. doi:10.1016/j.ijthermalsci.2021.107008.
  • Mohammadpour, J., H. Shahid, S. Fatemeh, and L. Ann. 2022. Machine learning regression-CFD models for the nanofluid heat transfer of a microchannel heat sink with double synthetic jets[J]. International Communications in Heat and Mass Transfer 130: 105808. doi:10.1016/j.icheatmasstransfer.2021.105808.
  • Mohana, R.-M., R. C-Kishor-Kumar, P.-R. Anisha, and B.V. RamanaMurthy. 2021. Random forest algorithms for the classification of tree-based ensemble[J]. Materials Today: Proceedings. doi:10.1016/j.matpr.2021.01.788.
  • Müftüoğlu, A., and E. Bilgen. 2008. Natural convection in an open square cavity with discrete heaters at their optimized positions[J]. International Journal of Thermal Sciences 47 (4):369–77. doi:10.1016/j.ijthermalsci.2007.03.015.
  • Muhammad-Ahmad Jamil, S.-Z. S., S.-M. Zubair, and S. M. Zubair. 2021. Selection of optimum heat flux distribution in pipe flow under laminar forced convection[J]. Arabian Journal for Science and Engineering 3 (46):2177–90. doi:10.1007/s13369-020-05053-w.
  • Qiu, Z., M. Zaiyong, W. Yingwei, Q. Suizheng, and S. Guanghui. 2015. Experimental research on the thermal hydraulic characteristics of liquid sodium flowing in annuli with low peclet number[J]. Annals of Nuclear Energy 75: 483–91. doi:10.1016/j.anucene.2014.08.069.
  • Razuvanov, N., P. Frick, I. Belyaev, and V. Sviridov. 2020. Experimental study of liquid metal heat transfer in a vertical duct affected by coplanar magnetic field: Upward flow[J]. International Journal of Heat and Mass Transfer 143: 118529. doi:10.1016/j.ijheatmasstransfer.2019.118529.
  • Roter, B., and S.-V. Dordevic. 2020. Predicting new superconductors and their critical temperatures using machine learning[J]. Physica C: Superconductivity and Its Applications 575: 1353689. doi:10.1016/j.physc.2020.1353689.
  • Shehadeh, A., A. Odey, A. Mamlook Rabia-Emhamed, and O. Hamedat. 2021. Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression[J]. Automation in Construction 129: 103827. doi:10.1016/j.autcon.2021.103827.
  • Song, Z., M. Bruce-T, and S. Bahgat. Airflow and temperature distribution optimization in data centers using artificial neural networks[J]. International Journal of Heat and Mass Transfer, 2013, 6480–90.
  • Sparrow, E.M., W.J. Minkowycz, and J. Murthy. 2006. Handbook of numerical heat transfer[M]. 2nd ed. Hoboken, N.J: J. Wiley.
  • Tang, Z., Q. Cong, T. Zhen, and C. Lanqi. 2022. Thermal management of electronic components based on new wave bio-inspired structures and nanofluids[J]. International Communications in Heat and Mass Transfer 131: 105840. doi:10.1016/j.icheatmasstransfer.2021.105840.
  • Thiangchanta, S., and C. Chatchawan. 2020. The multiple linear regression models of heat load for air-conditioned room[J]. Energy Reports 6: 972–77. doi:10.1016/j.egyr.2020.11.090.
  • Vu, A.T., S. Gulati, P.A. Vogel, T. Grunwald, and T. Bergs. 2021. Machine learning-based predictive modeling of contact heat transfer[J]. International Journal of Heat and Mass Transfer 174: 121300. doi:10.1016/j.ijheatmasstransfer.2021.121300.
  • Ying, Z., B. He, L. Su, Y. Kuang, D. He, and C. Lin. 2020. Convective heat transfer of molten salt-based nanofluid in a receiver tube with non-uniform heat flux[J]. Applied Thermal Engineering 181: 115922. doi:10.1016/j.applthermaleng.2020.115922.
  • Zhang, X.-D., X.-P. Li, Y.-X. Zhou, J. Yang, and J. Liu. 2019. Vascularized liquid metal cooling for thermal management of kW high power laser diode array[J]. Applied Thermal Engineering 162: 114212. doi:10.1016/j.applthermaleng.2019.114212.
  • Zhang, Y., Y. Cao, Y. Feng, D. Li, and J. Qin. 2022. Numerical simulation of convective heat transfer for an internally cooled gas turbine using liquid metal[J]. International Journal of Thermal Sciences 171: 107230. doi:10.1016/j.ijthermalsci.2021.107230.
  • Zhihua, Z. 2016. Machine learning[M]. Beijing, China: Tsinghua University Press.
  • Zhou, J., Z. Tao, and X. Peng. 2021. Calculation of flow heat transfer characteristics of liquid gallium[J]. International Journal of Advanced Nuclear Reactor Design and Technology 3: 175–83. doi:10.1016/j.jandt.2021.09.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.