197
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on effect of enhanced surfaces and inclined mode on spray cooling heat transfer performance using HFE-649 coolant

ORCID Icon & ORCID Icon
Pages 6537-6555 | Received 03 Jan 2022, Accepted 02 Jul 2022, Published online: 18 Jul 2022

References

  • Bostanci, H., D. P. Rini, J. P. Kizito, V. Singh, S. Seal, and L. C. Chow. 2014. High heat flux spray cooling with ammonia: Investigation of enhanced surfaces for HTC. International Journal of Heat and Mass Transfer 75:718–25. doi:10.1016/j.ijheatmasstransfer.2014.04.019.
  • Bostanci, H., B. He, and L. C. Chow. 2017. Spray cooling with ammonium hydroxide. International Journal of Heat and Mass Transfer 107:45–52. doi:10.1016/j.ijheatmasstransfer.2016.11.035.
  • Bostanci, H., S. S. Altalidi, and S. Nasrazadani. 2018. Two-phase spray cooling with HFC-134a and HFO-1234yf on practical enhanced surfaces. Applied Thermal Engineering 131:150–58. doi:10.1016/j.applthermaleng.2017.11.142.
  • Chen, R. H., L. C. Chow, and J. E. Navedo. 2002. Effects of spray characteristics on critical heat flux in subcooled water spray cooling. International Journal of Heat and Mass Transfer 45 (19):4033–43. doi:10.1016/S0017-9310(02)00113-8.
  • Chen, S., J. Liu, X. Liu, and Y. Hou. 2015. An experimental comparison of heat transfer characteristic between R134-a and R22 in spray cooling. Experimental Thermal and Fluid Science 66:206–12. doi:10.1016/j.expthermflusci.2015.03.015.
  • Chen, H., W. Long Cheng, W. Wei Zhang, Y. Hang Peng, and L. Jia Jiang. 2017. Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center. Energy 141:304–15. doi:10.1016/J.ENERGY.2017.09.089.
  • Chen, J. N., R. N. Xu, Z. Zhang, X. Chen, X. L. Ouyang, G. Y. Wang, and P. X. Jiang. 2018. Phenomenon and mechanism of spray cooling on nanowire arrayed and hybrid micro/ nanostructured surfaces. Journal of Heat Transfer 140 (11). doi: 10.1115/1.4039903.
  • Cheng, W. L., W. W. Zhang, H. Chen, and L. Hu. 2016. Spray cooling and flash evaporation cooling: The current development and application. Renewable and Sustainable Energy Reviews 55:614–28. doi:10.1016/j.rser.2015.11.014.
  • Ebadian, M. A., and C. X. Lin. 2011. A review of high-heat-flux heat removal technologies. Journal of Heat Transfer 133 (11):110801. doi:10.1115/1.4004340.
  • Guo, C., X. Hu, and D. Tang. 2010. An axial flow model for vertical rectangular microgrooves. Journal of Engineering Thermophysics 31:1709–12.
  • Hou, Y., Y. Tao, and X. Huai. 2013. The effects of micro-structured surfaces on multi-nozzle spray cooling. Applied Thermal Engineering 61:613–21.
  • Kurt, A. E., and I. Mudawar. 1995. Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surfaces. International Journal of Heat Mass Transfert 38:2985–96. doi:10.1016/0017-9310(95)00046-C.
  • Lin, Y. K., Z. F. Zhou, Y. Fang, H. L. Tang, and B. Chen. 2019. Heat transfer performance and optimization of a close-loop R410A flash evaporation spray cooling. Applied Thermal Engineering 159:113966. doi:10.1016/J.APPLTHERMALENG.2019.113966.
  • Liu, N., L. Li, and Y. T. Kang. 2019. Experimental study on heat transfer performance enhancement by micro-structured surfaces for inclination spray application. International Journal of Heat and Mass Transfer 133:631–40. doi:10.1016/j.ijheatmasstransfer.2018.12.177.
  • Mudawar, I. 2013. Recent advances in high-flux, two-phase thermal management. Journal of Thermal Science and Engineering Applications 5 (2):021012. doi:10.1115/1.4023599.
  • Parizad Benam, B., A. K. Sadaghiani, V. Yağcı, M. Parlak, K. Sefiane, and A. Koşar. 2021. Review on high heat flux flow boiling of refrigerants and water for electronics cooling. International Journal of Heat and Mass Transfer 180:121787. doi:10.1016/J.IJHEATMASSTRANSFER.2021.121787.
  • Silk, E. A., J. Kim, and K. Kiger. 2006. Spray cooling of enhanced surfaces : Impact of structured surface geometry and spray axis inclination. International Journal of Heat and Mass Transfer 49 (25–26):4910–20. doi:10.1016/j.ijheatmasstransfer.2006.05.031.
  • Singh, S., and R. Kukreja. 2021. Experimental study on effects of surfactant and spray inclination on heat transfer performance in nonboiling regime, energy sources, part A: Recovery. Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2021.2007313.
  • Singh, S., and R. Kukreja. 2022a. Effect of binary mixed-surfactants and hybrid nanofluid on spray cooling heat transfer. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 095440892210976. doi:10.1177/09544089221097691.
  • Singh, S., and R. Kukreja. 2022b. Experimental study on spray cooling heat transfer enhancement using MWCNT and TiO2 hybrid nanofluid. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 095440892210949. doi:10.1177/09544089221094991.
  • Sodtke, C., and P. Stephan. 2007. Spray cooling on micro structured surfaces. International Journal of Heat and Mass Transfer 50 (19–20):4089–97. doi:10.1016/j.ijheatmasstransfer.2006.12.037.
  • Tan, Y. B., J. L. Xie, F. Duan, T. N. Wong, K. C. Toh, K. F. Choo, P. K. Chan, and Y. S. Chua. 2013. Multi-nozzle spray cooling for high heat fl ux applications in a closed loop system. Applied Thermal Engineering 54 (2):372–79. doi:10.1016/j.applthermaleng.2013.01.033.
  • Visaria, M., and I. Mudawar. 2007. A systematic approach to predicting critical heat flux for inclined sprays. Journal of Electronic Packaging 129 (4):452. doi:10.1115/1.2804095.
  • Visaria, M., and I. Mudawar. 2008a. Effects of high subcooling on two-phase spray cooling and critical heat flux. International Journal of Heat and Mass Transfer 51 (21–22):5269–78. doi:10.1016/j.ijheatmasstransfer.2008.02.045.
  • Visaria, M., and I. Mudawar. 2008b. Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux. International Journal of Heat and Mass Transfer 51 (9–10):2398–410. doi:10.1016/j.ijheatmasstransfer.2007.08.010.
  • Wang, Y., M. Liu, D. Liu, K. Xu, and Y. Chen. 2010. Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime. Experimental Thermal and Fluid Science 34:933–42. doi:10.1016/j.expthermflusci.2010.02.010.
  • Wang, Y., N. Zhou, Z. Yang, and Y. Jiang. 2016. Experimental investigation of aircraft spray cooling system with different heating surfaces and different additives. Applied Thermal Engineering 103:510–21. doi:10.1016/j.applthermaleng.2016.04.124.
  • Wang, C., R. Xu, Y. Song, and P. Jiang. 2017a. Study on water droplet flash evaporation in vacuum spray cooling. International Journal of Heat and Mass Transfer 112:279–88. doi:10.1016/J.IJHEATMASSTRANSFER.2017.04.111.
  • Wang, J. X., Y. Z. Li, G. C. Li, K. Xiong, and X. Ning. 2017b. Investigation of a gravity-immune chip-level spray cooling for thermal protection of laser-based wireless power transmission system. International Journal of Heat and Mass Transfer 114:715–26. doi:10.1016/J.IJHEATMASSTRANSFER.2017.06.111.
  • Zhang, Z., J. Li, and P. X. Jiang. 2013. Experimental investigation of spray cooling on flat and enhanced surfaces. Applied Thermal Engineering 51 (1–2):102–11. doi:10.1016/j.applthermaleng.2012.08.057.
  • Zhang, Z., P. X. Jiang, D. M. Christopher, and X. G. Liang. 2015. Experimental investigation of spray cooling on micro-, nano- and hybrid-structured surfaces. International Journal of Heat and Mass Transfer 80:26–37. doi:10.1016/j.ijheatmasstransfer.2014.08.085.
  • Zhou, Z., B. Chen, Y. Wang, L. Guo, and G. Wang. 2012. An experimental study on pulsed spray cooling with refrigerant R-404a in laser surgery. Applied Thermal Engineering 39:29–36. doi:10.1016/J.APPLTHERMALENG.2012.01.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.