141
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Consequences of ignition timing on a hydrogen-fueled engine at various equivalence ratio

ORCID Icon & ORCID Icon
Pages 6556-6567 | Received 17 Feb 2022, Accepted 05 Jul 2022, Published online: 18 Jul 2022

References

  • Ağbulut, Ü., S. Sarıdemir, and S. Albayrak. 2019. Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. J Brazilian Soc Mech Sci Eng 41(9). Epub ahead of print. doi:10.1007/s40430-019-1891-8.
  • Amrouche, F., P. A. Erickson, J. W. Park, and S. Varnhagen 2016. Extending the lean operation limit of a gasoline Wankel rotary engine using hydrogen enrichment. International Journal of Hydrogen Energy 41(32):14261–71. doi:10.1016/j.ijhydene.2016.06.250.
  • Binjuwair, S., and A. Alkudsi. 2016. The effects of varying spark timing on the performance and emission characteristics of a gasoline engine: A study on Saudi Arabian RON91 and RON95. Fuel 180:558–64. doi:10.1016/j.fuel.2016.04.071.
  • Chen, Z., L. Wang, Q. Zhang, X. Zhang, B. Yang, and K. Zeng 2019. Effects of spark timing and methanol addition on combustion characteristics and emissions of dual-fuel engine fuelled with natural gas and methanol under lean-burn condition. Energy Conversion and Management 181:519–27. doi:10.1016/j.enconman.2018.12.040.
  • Das, L. M. Hydrogen engines: A view of the past and a look into the future.   International Journal of Hydrogen Energy 15(6):425–443. doi:10.1016/0360-3199(90)90200-I.
  • Dhyani, V., and K. A. Subramanian. 2018. Experimental investigation on effects of knocking on backfire and its control in a hydrogen fueled spark ignition engine. International Journal of Hydrogen Energy 43 (14):7169–78. doi:10.1016/j.ijhydene.2018.02.125.
  • Dhyani, V., and K. A. Subramanian. 2019. Fundamental characterization of backfire in a hydrogen fuelled spark ignition engine using CFD and experiments. International Journal of Hydrogen Energy 44 (60):32254–70. doi:10.1016/j.ijhydene.2019.10.077.
  • Dhyani, V., and K. A. Subramanian. 2021. Development of online control system for elimination of backfire in a hydrogen fuelled spark ignition engine. International Journal of Hydrogen Energy 46 (27):14757–63. doi:10.1016/j.ijhydene.2020.08.148.
  • Diéguez, P. M. M., J. C. C. Urroz, and S. Marcelino-Sádaba 2014. Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen – Methane mixtures. Applied Energy 113:43–88. doi:10.1016/j.apenergy.2013.08.063.
  • Dinesh, M. H., J. K. Pandey, and G. N. Kumar. 2022. Effect of parallel LPG fuelling in a methanol fuelled SI engine under variable compression ratio. Energy 239:122134. doi:10.1016/j.energy.2021.122134.
  • Du, Y., X. Yu, J. Wang, H. Wu, W. Dong, and J. Gu 2016. Research on combustion and emission characteristics of a lean burn gasoline engine with hydrogen direct-injection. International Journal of Hydrogen Energy 41(4):3240–48. doi:10.1016/j.ijhydene.2015.12.025.
  • Dunn-Rankin, Derek, M. Miyasato, Matt, K. Pham, Trinh, Bradley, Derek, Cavaliere, Antonio, and L. Evans, Robert. 2008. Lean-Burn Spark-Ignited Internal Combustion Engines. Dunn-Rankin, Derek. Lean combustion. Epub ahead of print 978-0-12-370619-5. doi:10.1016/B978-0-12-370619-5.X5001-8.
  • Gao, J., G. Tian, C. Ma, L. Huang, and S. Xing 2021a. Explorations of the impacts on a hydrogen fuelled opposed rotary piston engine performance by ignition timing under part load conditions. International Journal of Hydrogen Energy 46(21):11994–2008. doi:10.1016/j.ijhydene.2021.01.030.
  • Gao, J., G. Tian, C. Ma, S. Xing, and L. Huang 2021b. Three-dimensional numerical simulations on the effect of ignition timing on combustion characteristics, nitrogen oxides emissions, and energy loss of a hydrogen fuelled opposed rotary piston engine over wide open throttle conditions. Fuel 288:119722. doi:10.1016/j.fuel.2020.119722.
  • Gong, C., Z. Li, Y. Chen, J. Liu, F. Liu, and Y. Han 2019. Influence of ignition timing on combustion and emissions of a spark-ignition methanol engine with added hydrogen under lean-burn conditions. Fuel 235:227–38. doi:10.1016/j.fuel.2018.07.097.
  • Gong, C., Z. Li, and J. Sun 2020. Evaluation on combustion and lean-burn limit of a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection. Applied Energy 277:115622.
  • Gürbüz, H., and A. Ih. 2021. Evaluating the effects of boosting intake-air pressure on the performance and environmental-economic indicators in a hydrogen-fueled SI engine. International Journal of Hydrogen Energy 46 (56):28801–10. doi:10.1016/j.ijhydene.2021.06.099.
  • Hamdan, M. O., and M. Y. E. Selim. 2016. Performance of CI engine operating with hydrogen supplement co-combustion with jojoba methyl ester. International Journal of Hydrogen Energy 41 (24):10255–64. doi:10.1016/j.ijhydene.2016.04.168.
  • he, L. Q., H. J. Bin, S. B. Gang, F.-S. Liu, X. Wang, C. Li, and L.-Z. Bao 2019. Effect of equivalence ratios on the power, combustion stability and NOx controlling strategy for the turbocharged hydrogen engine at low engine speeds. International Journal of Hydrogen Energy 44(31):17095–102. doi:10.1016/j.ijhydene.2019.03.245.
  • Hoang, A. T., Z. H. Huang, and S. Nižetić 2022. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy 47:4394–425.
  • Hotta, S. K., N. Sahoo, K. Mohanty, and V. Kulkarni 2020. Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine. Renew Energy 150:854–67. doi:10.1016/j.renene.2019.12.145.
  • Jeeragal, R., and K. A. Subramanian. 2019. Experimental investigation for NOx emission reduction in hydrogen fueled spark ignition engine using spark timing retardation, exhaust gas recirculation and water injection techniques. J Therm Sci 28 (4):789–800. doi:10.1007/s11630-019-1099-3.
  • Kim, J., K. Min, S. Song, H.-K. Baek, and S. W. Lee 2018. Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios. Applied Energy 228:1353–61. doi:10.1016/j.apenergy.2018.06.129.
  • LEE, T. Y. K., and SH. 2012. Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a Di diesel engine. Int J … 13:293–300.
  • Lee, J., C. Park, J. Bae, Y. Kim, Y. Choi, and B. Lim 2019. Effect of different excess air ratio values and spark advance timing on combustion and emission characteristics of hydrogen-fueled spark ignition engine. International Journal of Hydrogen Energy 44(45):25021–30. doi:10.1016/j.ijhydene.2019.07.181.
  • Nadaleti, W. C., G. Przybyla, P. Belli Filho, and S. Souza 2017. Methane-hydrogen fuel blends for SI engines in Brazilian public transport: Efficiency and pollutant emissions. International Journal of Hydrogen Energy 42(49):29585–96. doi:10.1016/j.ijhydene.2017.10.068.
  • Nikolaidis, P., and A. Poullikkas. 2017. A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611. doi:10.1016/j.rser.2016.09.044.
  • Nuthan Prasad, B. S., J. K. Pandey, and G. N. Kumar. 2020. Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline. Energy 191:116605. doi:10.1016/j.energy.2019.116605.
  • Pandey, J. K., and G. N. Kumar. 2022. Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing. Energy 246:123364. doi:10.1016/j.energy.2022.123364.
  • Park, C., Y. Kim, Y. Choi, J. Lee, and B. Lim 2019. The effect of engine speed and cylinder-to-cylinder variations on backfire in a hydrogen-fueled internal combustion engine. International Journal of Hydrogen Energy 44(39):22223–30. doi:10.1016/j.ijhydene.2019.06.058.
  • Penaranda, A., Boggio, S. D. M., P. T. Lacava, and S. Merola. 2018. Characterization of flame front propagation duringearly and late combustion for methane-hydrogenfueling of an optically accessible SI enginev. International Journal of Hydrogen Energy 23(52): 23538–23557. doi:10.1016/j.ijhydene.2018.10.167.
  • Salvi, B. L., and K. A. Subramanian. 2016. Experimental investigation on effects of compression ratio and exhaust gas recirculation on backfire, performance and emission characteristics in a hydrogen fuelled spark ignition engine. International Journal of Hydrogen Energy 41 (13):5842–55. doi:10.1016/j.ijhydene.2016.02.026.
  • Sayin, C. 2012. The impact of varying spark timing at different octane numbers on the performance and emission characteristics in a gasoline engine. Fuel 97:856–61. doi:10.1016/j.fuel.2012.03.013.
  • Senturk Acar, M., and O. Arslan. 2017. Exergo-economic evaluation of a new drying system boosted by ranque-hilsch vortex tube. Applied Thermal Engineering 124:1–16. doi:10.1016/j.applthermaleng.2017.06.010.
  • Shi, W., X. Yu, H. Zhang, and H. Li 2016. Effect of spark timing on combustion and emissions of a hydrogen direct injection stratified gasoline engine. International Journal of Hydrogen Energy 42(8):5619–26. doi:10.1016/j.ijhydene.2016.02.060.
  • Singh, S., S. Jain, V. Ps, Tiwari, A.K., Nouni, M.R., Pandey, J.K., and Goel, S. 2015. Hydrogen : A sustainable fuel for future of the transport sector Hydrogen : A sustainable fuel for future of the transport sector 51:623–33. doi:10.1016/j.rser.2015.06.040. https://doi.org/10.1016/j.rser.2015.06.040
  • Su, T., C. Ji, S. Wang, L. Shi, J. Yang, and X. Cong 2017. Effect of spark timing on performance of a hydrogen-gasoline rotary engine. Energy Convers Manag 148:120–27. doi:10.1016/j.enconman.2017.05.064.
  • Su, T., C. Ji, S. Wang, X. Cong, and L. Shi 2018. Research on performance of a hydrogen/n-butanol rotary engine at idling and varied excess air ratios. Energy Convers Manag 162:132–38. doi:10.1016/j.enconman.2018.02.042.
  • Vancoillie, J., J. Demuynck, L. Sileghem, M. Van De Ginste, and S. Verhelst 2012. Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline e Engine efficiency study. International Journal of Hydrogen Energy 37(12):9914–24. doi:10.1016/j.ijhydene.2012.03.145.
  • Verhelst, S., and T. Wallner. 2009. Hydrogen-fueled internal combustion engines. Prog Energy Combust Sci 35 (6):490–527. doi:10.1016/j.pecs.2009.08.001.
  • Verhelst, S., J. W. Turner, L. Sileghem, and J. Vancoillie 2019. Methanol as a fuel for internal combustion engines. Prog Energy Combust Sci 70:43–88. doi:10.1016/j.pecs.2018.10.001.
  • White, C. M., R. R. Steeper, and A. E. Lutz. 2006. The hydrogen-fueled internal combustion engine: A technical review. International Journal of Hydrogen Energy 31 (10):1292–305. doi:10.1016/j.ijhydene.2005.12.001.
  • Xu, P., C. Ji, S. Wang, X. Cong, Z. Ma, C. Tang, H. Meng, and C. Shi 2020. Effects of direct water injection on engine performance in engine fueled with hydrogen at varied excess air ratios and spark timing. Fuel 269:117209. doi:10.1016/j.fuel.2020.117209.
  • Yousufuddin, S., and M. Masood. 2009. Effect of ignition timing and compression ratio on the performance of a hydrogen-ethanol fuelled engine. International Journal of Hydrogen Energy 34 (16):6945–50. doi:10.1016/j.ijhydene.2009.05.122.
  • Zhang, B., C. Ji, and S. Wang. 2015. Combustion analysis and emissions characteristics of a hydrogen-blended methanol engine at various spark timings. International Journal of Hydrogen Energy 40 (13):4707–16. doi:10.1016/j.ijhydene.2015.01.142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.