285
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Prediction of gas production potential based on machine learning in shale gas field: a case study

, ORCID Icon, , , &
Pages 6581-6601 | Received 07 Apr 2022, Accepted 07 Jul 2022, Published online: 18 Jul 2022

References

  • Akande’, K. O., S. O. Olatunji, T. O. Owolabi, and A. AbdulRaheem 2015. Feature selection-based ANN for improved characterization of carbonate reservoir. SPE Saudi Arabia Section Annual Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia. doi:10.2118/178029-MS.
  • Al-Anazi, A. F., and I. D. Gates. 2010. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Computers & Geosciences 36 (12):1494–503. doi:10.1016/j.cageo.2010.03.022.
  • Al-Marhoun, M. 2021. A single artificial neural network model predicts bubble point physical properties of crude oils. SPE Middle East Oil & Gas Show and Conference, Manama, Bahrain. doi:10.2118/204648-ms.
  • Amr, S., H. El Ashhab, M. El-Saban, P. Schietinger, C. Caile, A. Kaheel, and L. Rodriguez 2018. A large-scale study for a multi-basin machine learning model predicting horizontal well production. SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA. doi:10.2118/191538-ms.
  • Anifowose, F., C. Ayadiuno, and F. Rashedan 2019. Comparative analysis of machine learning based feature selection approach for carbonate reservoir cementation factor prediction. International Petroleum Technology Conference, Beijing, China. doi:10.2523/iptc-19330-ms.
  • Baihly, J. D., G. Lindsay, and R. Clayton. 2015. What does US LNG export mean for future shale gas development: How many shale gas wells are needed to fuel a LNG train? SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, Texas, USA. doi:10.15530/URTEC-2015-2172527.
  • Essam, Y., Y. F. Huang, J. L. Ng, A. H. Birima, A. N. Ahmed, and A. El-Shafie. 2022. Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms. Scientific Reports 12 (1):3883. doi:10.1038/s41598-022-07693-4.
  • Han, D., J. Jung, and S. Kwon. 2020. Comparative study on supervised learning models for productivity forecasting of shale reservoirs based on a data-driven approach. Applied Sciences-Basel 10 (4). doi: 10.3390/app10041267.
  • Huang, N. T., G. B. Lu, and D. G. Xu. 2016. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 9 (10):767. doi:10.3390/en9100767.
  • Hui, G., S. N. Chen, Y. M. He, H. Wang, and F. Gu. 2021. Machine learning-based production forecast for shale gas in unconventional reservoirs via integration of geological and operational factors. Journal of Natural Gas Science and Engineering 94:104045. doi:10.1016/j.jngse.2021.104045.
  • Janitza, S., C. Strobl, and A. L. Boulesteix. 2013. An AUC-based permutation variable importance measure for random forests. Bmc Bioinformatics 14 (1). doi: 10.1186/1471-2105-14-119.
  • Ledesma, S., I. Hernández-Pérez, J. M. Belman-Flores, J. A. Alfaro-Ayala, J. Xamán, and P. Fallavollita. 2020. Using artificial intelligence to analyze the thermal behavior of building roofs. Journal of Energy Engineering 146 (4):04020022. doi:10.1061/(ASCE)EY.1943-7897.0000677.
  • Li, Y., D. Z. Tang, P. Wu, X. L. Niu, K. Wang, P. Qiao, and Z. S. Wang. 2016. Continuous unconventional natural gas accumulations of carboniferous-permian coal-bearing strata in the Linxing area, northeastern Ordos basin, China. Journal of Natural Gas Science and Engineering 36:314–27. doi:10.1016/j.jngse.2016.10.037.
  • Li, Y., Z. S. Wang, Z. J. Pan, X. L. Niu, Y. Yu, and S. Z. Meng. 2019. Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the Ordos Basin, China. Fuel 241:417–31. doi:10.1016/j.fuel.2018.12.066.
  • Li, Y., J. Yang, Z. Pan, and W. Tong. 2020. Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel doi:10.1016/j.fuel.2019.116352.
  • Li, Y., J.-Q. Chen, J.-H. Yang, J.-S. Liu, and W.-S. Tong. 2021. Determination of shale macroscale modulus based on microscale measurement: A case study concerning multiscale mechanical characteristics. Petroleum Science doi:10.1016/j.petsci.2021.10.004.
  • Liu, -H.-H., J. Zhang, F. Liang, C. Temizel, M. A. Basri, and R. Mesdour. 2021. Incorporation of physics into machine learning for production prediction from unconventional reservoirs: a brief review of the gray-box approach. SPE Reservoir Evaluation & Engineering 24 (4):847–58. doi:10.2118/205520-pa.
  • Liu, X. Z., Z. Tian, and C. Chen. 2021. Total organic carbon content prediction in lacustrine shale using extreme gradient boosting machine learning based on bayesian optimization. Geofluids. doi:10.1155/2021/6155663.
  • Liu, X. Z., Z. Tian, and C. Chen. 2021. Total Organic Carbon Content Prediction in Lacustrine Shale Using Extreme Gradient Boosting Machine Learning Based on Bayesian Optimization. Geofluids. doi:10.1155/2021/6155663.
  • Luo, S., C. Ding, H. Cheng, B. Zhang, Y. Zhao, and L. Liu. 2022. Estimated ultimate recovery prediction of fractured horizontal wells in tight oil reservoirs based on deep neural networks. Advances in Geo-Energy Research 6 (2):111–22. doi:10.46690/ager.2022.02.04.
  • Noh, B., C. Youm, E. Goh, M. Lee, H. Park, H. Jeon, and O. Y. Kim. 2021. XGBoost based machine learning approach to predict the risk of fall in older adults using gait outcomes. Scientific Reports 11 (1):12183. doi:10.1038/s41598-021-91797-w.
  • Noshi, C. I. 2019. Application of data science and machine learning algorithms for ROP optimization in west texas: turning data into knowledge. Otc. doi:10.4043/29288-ms.
  • Noshi, C. I., M. R. Eissa, and R. M. Abdalla. 2019. An intelligent data driven approach for production prediction. Offshore Technology Conference. doi:10.4043/29243-ms.
  • Ouadfeul, S.-A., and L. Aliouane. 2015. Total organic carbon prediction in shale gas reservoirs from well logs data using the multilayer perceptron neural network with levenberg marquardt training algorithm: Application to Barnett shale. Arabian Journal for Science and Engineering 40 (11):3345–49. doi:10.1007/s13369-015-1685-y.
  • Peng, Z., C. Li, I. E. Grossmann, K. Kwon, S. Ko, J. Shin, and Y. Feng. 2022. Shale gas field development planning under production profile uncertainty. AIChE Journal 68 (1):e17439. doi:10.1002/aic.17439.
  • Shar, A. M., A. A. Mahesar, and K. R. Memon. 2018. Could shale gas meet energy deficit: Its current status and future prospects. Journal of Petroleum Exploration and Production Technology 8 (4):957–67. doi:10.1007/s13202-017-0399-y.
  • Solarin, S. A., L. A. Gil-Alana, and C. Lafuente. 2020. An investigation of long range reliance on shale oil and shale gas production in the US market. Energy 195:116933. doi:10.1016/j.energy.2020.116933.
  • Zhao, Y.-L., N.-Y. Li, L.-H. Zhang, and R.-H. Zhang. 2019. Productivity analysis of a fractured horizontal well in a shale gas reservoir based on discrete fracture network model. Journal of Hydrodynamics 31 (3):552–61. doi:10.1007/s42241-018-0163-x.
  • Zhou, F., H. Fan, Y. Liu, Y. Ye, H. Diao, Z. Wang, R. Rached, Y. Tu, and E. Davio 2022. Application of xgboost algorithm in rate of penetration prediction with accuracy. International Petroleum Technology Conference, Riyadh, Saudi Arabia. doi:10.2523/iptc-22100-ms.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.