326
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Exergy analysis of banana drying process via a closed-loop air source heat pump system

ORCID Icon, ORCID Icon & ORCID Icon
Pages 6777-6792 | Received 21 Jan 2022, Accepted 08 Jul 2022, Published online: 26 Jul 2022

References

  • Aktaş, M., A. Khanlari, A. Amini, and S. Sevik. 2017. Performance analysis of heat pump and infrared–heat pump drying of grated carrot using energy-exergy methodology. Energy Conversion and Management 132:327–38. doi:10.1016/j.enconman.2016.11.027.
  • Atalay, H. 2019. Comparative assessment of solar and heat pump dryers with regards to exergy and exergoeconomic performance. Energy 189:116180. doi:10.1016/j.energy.2019.116180.
  • Choi, Y., and M. Okos. (1986). Effects of temperature and composition on the thermal properties of foods. Food Engineering and Process Applications, Transport Phenomena, Elsevier Applied Science, Vol. 1, 93–101. https://cir.nii.ac.jp/crid/1573387450391552384#citations_container.
  • Chua, K. J., S. K. Chou, J. C. Ho, and M. N. A. Hawlader. 2002. Heat pump drying: Recent developments and future trends. Drying Technology 20 (8):1579–610. doi:10.1081/DRT-120014053.
  • Coşkun, S., I. Doymaz, C. Tunçkal, and S. Erdoğan. 2017. Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transfer 53 (6):1863–71. doi:10.1007/s00231-016-1946-7.
  • Djebli, A., S. Hanini, O. Badaoui, B. Haddad, and A. Benhamou. 2020. Modeling and comparative analysis of solar drying behavior of potatoes. Renewable Energy 145:1494–506. doi:10.1016/j.renene.2019.07.083.
  • Ekiciler, R. 2019. Energy and exergy analysis of a novel three-stage heat pump drying system. Bartin University International Journal of Natural and Applied Sciences 2 (1):59–72.
  • EL-Mesery, H. S., A. I. EL-Seesy, Z. Hu, and Y. Li. 2022. Recent developments in solar drying technology of food and agricultural products: A review. Renewable and Sustainable Energy Reviews 157:112070. doi:10.1016/j.rser.2021.112070.
  • Erbay, Z., and A. Hepbaşlı. 2013. Advanced exergy analysis of a heat pump drying system used in food drying. Drying Technology 31 (7):802–10. doi:10.1080/07373937.2012.763044.
  • Erbay, Z., and A. Hepbaşlı. 2017. Exergoeconomic evaluation of a ground-source heat pump food dryer at varying dead state temperatures. Journal of Cleaner Production 142:1425–35. doi:10.1016/j.jclepro.2016.11.164.
  • Ganjehsarabi, H., I. Dincer, and A. Gungor. 2014. Exergoeconomic analysis of a heat pump tumbler dryer. Drying Technology 32 (3):352–60. doi:10.1080/07373937.2013.829853.
  • Gürel, A. E., I. Ceylan, and S. Yilmaz. 2015. Experimental analyses of heat pump and parabolic trough solar fluidized bed dryer. Journal of Thermal Science and Technology 35 (1):107–15.
  • Hamid, K., U. Sajjad, K. S. Yang, S. K. Wu, and C. C. Wang. 2022. Assessment of an energy efficient closed loop heat pump dryer for high moisture contents materials: An experimental investigation and AI based modelling. Energy 238:121819. doi:10.1016/j.energy.2021.121819.
  • Holman, J. P. 2001. Experimental methods for engineers. Boston-US: McGraw-Hill.
  • Huang, D., P. Yang, X. Tang, L. Luo, and B. Sunden. 2021. Application of infrared radiation in the drying of food products. Trends in Food Science & Technology 110:765–77. doi:10.1016/j.tifs.2021.02.039.
  • Icier, F., N. Çolak, Z. Erbay, E. H. Kuzgunkaya, and A. Hepbasli. 2010. A comparative study on exergetic performance assessment for drying of broccoli florets in three diff. Drying Technology 28 (2):193–204. doi:10.1080/07373930903524017.
  • Kılıç, F. 2021. Effects of three drying methods on kinetics and energy consumption of carrot drying process and modeling with artificial neural networks.” Energy Sources, Part A: Recovery. Utilization, and Environmental Effects 43(12):1468–85. Taylor & Francis. doi:10.1080/15567036.2020.1832163.
  • Kuzgunkaya, E. H., and A. Hepbaşlı. 2007. Exergetic evaluation of drying of laurel leaves in a vertical ground‐source heat pump drying cabinet. Int. J. Energy Res 31 (3):245–58. doi:10.1002/er.1245.
  • Mugi, V. R., P. Das, R. Balijepalli, and C. Vp. 2022. A review of natural energy storage materials used in solar dryers for food drying applications. Journal of Energy Storage 49:104198. doi:10.1016/j.est.2022.104198.
  • Mujumdar, A. S. 2007. Book review: Handbook of industrial drying, third edition: A review of: ‘Publisher: CRC press. boca raton, fl. Drying Technology 25 (6):1133–34. doi:10.1080/07373930701399224.
  • Özcan, H., and I. Dinçer. 2013. Exergy analysis and environmental impact assessment of solar-driven heat pump drying systems . In Causes, impacts and solutions to global warming, 839–58. doi:10.1007/978-1-4614-7588-0. Chapter 44. New York, NY: Springer.
  • Qin, Q., and L. Tang. 2021. Exergy analysis of a thermostatic heat pump drying system with adjustable bypass air ratios. International Journal of Exergy 35(1):155–71. Inderscience Publishers. doi:10.1504/IJEX.2021.115092.
  • Salehi, F. 2020. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science 20 (3):586–602. doi:10.1080/15538362.2019.1616243.
  • Singh, A., J. Sarkar, and R. R. Sahoo. 2019. Energetic and exergetic performance simulation of open-type heat pump dryer with next-generation refrigerants. Drying Technology 38 (8):1011–23. doi:10.1080/07373937.2019.1610770.
  • Singh, A., J. Sarkar, and R. R. Sahoo. 2020a. Experimental energy-exergy performance and kinetics analyses of compact dual-mode heat pump drying of food chips. Journal of Food Process Engineering 43 (6):e13404. doi:10.1111/jfpe.13404.
  • Singh, A., J. Sarkar, and R. R. Sahoo. 2020b. Experiment on waste heat recovery‐assisted heat pump drying of food chips: Performance, economic, and exergoeconomic analyses. Journal of Food Process Preservation 44 (9):1–13. doi:10.1111/jfpp.14699.
  • Singh, A., J. Sarkar, and R. R. Sahoo. 2021. Experimentation and performance analysis of solar-assisted heat pump dryer for intermittent drying of food chips. Journal of Solar Energy Engineering 144(2). doi:10.1115/1.4052549
  • Syahrul, S., I. Dincer, and F. Hamdullahpur. 2003. Thermodynamic modeling of fluidized bed drying of moist particles. International Journal of Thermal Sciences 42 (7):691–701. doi:10.1016/S1290-0729(03)00035-8.
  • Taylan, O., D. Baker, and B. Kaftanoğlu. 2011. Normalized thermodynamic model for intermittent energy systems and application to solar-powered adsorption cooling systems. International Journal of Thermodynamics 14 (3):107–15. doi:10.5541/ijot.289.
  • Tunckal, C., and I. Doymaz. 2020. Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy 150:918–23. doi:10.1016/j.renene.2020.01.040.
  • Tunçkal, C., S. Coşkun, I. Doymaz, and E. Ergun. 2018. Determination of sliced pineapple drying characteristics in a closed loop heat pump assisted drying system. IJRED 7 (1):35–41. doi:10.14710/ijred.7.1.35-41.
  • Tunçkal, C. 2020. Investigation of performance and drying kinetics of the closed, partially open, and open heat pump drying systems. Journal of Food Process Engineering 43 (12):e13566. doi:10.1111/jfpe.13566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.