146
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of phase change material energy storage system integrated with thermoelectric generator under transient heat loads

, ORCID Icon &
Pages 6793-6806 | Received 31 Jan 2022, Accepted 08 Jul 2022, Published online: 26 Jul 2022

References

  • Abbasi, H. R., and H. Pourrahmani. 2020. Multi-objective optimization and exergoeconomic analysis of a continuous solar-driven system with PCM for power, cooling and freshwater production. Energy Conversion and Management 211:112761. doi:10.1016/j.enconman.2020.112761.
  • Altstedde, M. K., F. Rinderknecht, and H. Friedrich. 2014. Integrating phase-change materials into automotive thermoelectric generators. Journal of Electronic Materials 43 (6):2134–40. doi:10.1007/s11664-014-2990-z.
  • Atouei, S. A., Rezania, A., Ranjbar, A.A., and Rosendahl, L. . 2018. Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation. Energy 156:311–18.
  • Coleman, H. W., and W. G. Steele. 2018. Experimentation, validation, and uncertainty analysis for engineers. New York: John Wiley & Sons.
  • Darkwa, J., J. Calautit, D. Du, and G. Kokogianakis . 2019. A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells. Applied Energy 248:688–701. doi:10.1016/j.apenergy.2019.04.147.
  • Demir, M. E., and I. Dincer. 2017. Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production. International Journal of Hydrogen Energy 42 (51):30044–56. doi:10.1016/j.ijhydene.2017.09.001.
  • Demirkıran, İ. G., and E. Cetkin. 2021. Emergence of rectangular shell shape in thermal energy storage applications: Fitting melted phase changing material in a fixed space. Journal of Energy Storage 37:102455. doi:10.1016/j.est.2021.102455.
  • Eddine, A. N., D. Chalet, X. Faure, L. Aixala, and P. Chessé . 2018. Effect of engine exhaust gas pulsations on the performance of a thermoelectric generator for wasted heat recovery: An experimental and analytical investigation. Energy 162:715–27. doi:10.1016/j.energy.2018.08.065.
  • Goeke, J., and A. Henne. 2015. Time-temperature charge function of a high dynamic thermal heat storage with phase change material. Energy and Power Engineering 7 (2):41. doi:10.4236/epe.2015.72004.
  • He, D., D. Ou, H. Gao, and F. Jiao . 2022. Performance evaluation of a thermoelectric generator‐coupled composite phase change material for intermittent aerodynamic heat sources. International Journal of Energy Research. 46 (3):2698–708. doi:10.1002/er.7340.
  • Jouhara, H., A. Żabnieńska-Góra, N. Khordehgah, Q. Doraghi, L. Ahmad, L. Norman, B. Axcell, L. Wrobel, and S. Dai . 2021. Thermoelectric generator (TEG) technologies and applications. International Journal of Thermofluids 9:100063. doi:10.1016/j.ijft.2021.100063.
  • Kiziroglou, M. E., S. W. Wright, T. T. Toh, P. D. Mitcheson, T. Becker, and E. M. Yeatman . 2013. Design and fabrication of heat storage thermoelectric harvesting devices. IEEE Transactions on Industrial Electronics. 61 (1):302–09. doi:10.1109/TIE.2013.2257140.
  • Luo, D., R. Wang, W. Yu, Z. Sun, and X. Meng . 2019. Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery. Applied Thermal Engineering 153:837–47. doi:10.1016/j.applthermaleng.2019.03.060.
  • Mao, J., Liu, A., Wang, Y., Li, Y., Xie, H., and Wu, Z. . Enhancement of power generation of thermoelectric generator using phase change material. in IOP Conference Series: Materials Science and Engineering, Hangzhou, China. 2020. IOP Publishing.
  • Meng, J.-H., D.-Y. Gao, Y. Liu, K. Zhang, and G. Lu . 2022. Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance. Energy 245:123332. doi:10.1016/j.energy.2022.123332.
  • Mohammadnia, A., Ziapour, M., Sedaghati, F., Rosendhal, L., and Rezania, A. . 2021. Fan operating condition effect on performance of self-cooling thermoelectric generator system. Energy 224:120177. doi:10.1016/j.energy.2021.120177.
  • Muthu, G., Thulasi, S., Dhinakaran, V., and Mothilal, T. 2021. Performance of solar parabolic dish thermoelectric generator with PCM. Materials Today: Proceedings 37:929–933. doi:10.1016/j.matpr.2020.06.123.
  • Rezania, A., S. A. Atouei, and L. Rosendahl. 2020. Critical parameters in integration of thermoelectric generators and phase change materials by numerical and Taguchi methods. Materials Today Energy 16:100376. doi:10.1016/j.mtener.2019.100376.
  • Selvam, C., S. Manikandan, N. V. Krishna, R. Lamba, S. C. Kaushik, and O. Mahian . 2020. Enhanced thermal performance of a thermoelectric generator with phase change materials. International Communications in Heat and Mass Transfer 114:104561. doi:10.1016/j.icheatmasstransfer.2020.104561.
  • Shittu, S., G. Li, Q. Xuan, X. Xiao, X. Zhao, X. Ma, and Y. G. Akhlaghi . 2020. Transient and non-uniform heat flux effect on solar thermoelectric generator with phase change material. Applied Thermal Engineering 173:115206. doi:10.1016/j.applthermaleng.2020.115206.
  • Stupar, A., U. Drofenik, and J. W. Kolar. 2011. Optimization of phase change material heat sinks for low duty cycle high peak load power supplies. IEEE Transactions on Components, Packaging, and Manufacturing Technology 2 (1):102–15. doi:10.1109/TCPMT.2011.2168957.
  • Tohidi, F., S. G. Holagh, and A. Chitsaz. 2022. Thermoelectric Generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering 201:117793. doi:10.1016/j.applthermaleng.2021.117793.
  • Tuoi, T. T. K., N. Van Toan, and T. Ono. 2020. Theoretical and experimental investigation of a thermoelectric generator (TEG) integrated with a phase change material (PCM) for harvesting energy from ambient temperature changes. Energy Reports 6:2022–29.
  • Wang, Y., Y. Peng, K. Guo, X. Zheng, J. Darkwa, and H. Zhong . 2021. Experimental investigation on performance improvement of thermoelectric generator based on phase change materials and heat transfer enhancement. Energy 229:120676. doi:10.1016/j.energy.2021.120676.
  • Weera, S., H. Lee, and A. Attar. 2020. Utilizing effective material properties to validate the performance of thermoelectric cooler and generator modules. Energy Conversion and Management 205:112427. doi:10.1016/j.enconman.2019.112427.
  • Whalen, S. A., and R. C. Dykhuizen. 2012. Thermoelectric energy harvesting from diurnal heat flow in the upper soil layer. Energy Conversion and Management 64:397–402. doi:10.1016/j.enconman.2012.06.015.
  • Wu, W., G.K. Ren, X. Chen, Y. Liu, Z. Zhou, J. Song, Y. Shi, J.M. Jiang, and Y.H. Lin . 2021. Interfacial advances yielding high efficiencies for thermoelectric devices. Journal of Materials Chemistry A. 9 (6):3209–30. doi:10.1039/D0TA06471H.
  • Yu, J., L. Kong, H. Wang, H. Zhu, Q. Zhu, and J. Su . 2019. A novel structure for heat transfer enhancement in phase change composite: Rolled graphene film embedded in graphene foam. ACS Applied Energy Materials. 2 (2):1192–98. doi:10.1021/acsaem.8b01752.
  • Yu, J., H. Wang, L. Kong, H. Zhu, Q. Zhu, Q. Li, and J. Guan . 2020. Analysis of temperature control effect of composite phase change structure used in thermoelectric conversion system. Applied Thermal Engineering 167:114760. doi:10.1016/j.applthermaleng.2019.114760.
  • Zalba, B., J. M. Marı́n, L. F. Cabeza, and H. Mehling . 2003. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Applied Thermal Engineering. 23 (3):251–83. doi:10.1016/S1359-4311(02)00192-8.
  • Zoui, M. A., S. Bentouba, J. G. Stocholm, and M. Bourouis . 2020. A review on thermoelectric generators: Progress and applications. Energies. 13 (14):3606. doi:10.3390/en13143606.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.