200
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Engineering practice of underground heat injection-enhanced gas extraction in low-permeability coal seams

ORCID Icon, , , &
Pages 6823-6836 | Received 02 Mar 2022, Accepted 06 Jul 2022, Published online: 26 Jul 2022

References

  • Cheng, H., N. Zhang, Y. Yang, W. Peng, and H. Chen. 2019. A study on the mechanical mechanism of injection heat to increase production of gas in low-permeability coal seam. Energies 12 (12):12. doi:10.3390/en12122332.
  • Jiang, C., Y. Wang, M. Duan, X. Guo, Y. Chen, and Y. Yang. 2021. Experimental study on the evolution of pore-fracture structures and mechanism of permeability enhancement in coal under cyclic thermal shock. Fuel 304:121455. doi:10.1016/J.FUEL.2021.121455.
  • Lan, W., H. Wang, Q. Liu, X. Zhang, J. Chen, Z. Li, K. Feng, and S. Chen. 2021. Investigation on the microwave heating technology for coalbed methane recovery. Energy 121450. doi:10.1016/J.ENERGY.2021.121450.
  • Li, W., X. Yang, Y. Zhang, X. Bei, X. Xiao, K. Chen, and J. Liu. 2018. Experimental study on migration yield law of coal-bed methane under the condition of saturated steam. Meitan Xuebao/Journal of the China Coal Society 43 (5):1343–49. doi:10.13225/j.cnki.jccs.2017.1059.
  • Li, X., D. Zhao, C. Zhang, Y. Qin, H. Chang, and Z. Feng. 2021. Gas desorption characteristics and related mechanism analysis under the action of superheated steam and pressurized water based on an experimental study. Journal of Natural Gas Science and Engineering 96:104268. doi:10.1016/J.JNGSE.2021.104268.
  • Liang, W., J. Yan, B. Zhang, and D. Hou. 2021. Review on coal bed methane recovery theory and technology: Recent progress and perspectives. Energy & Fuels 35 (6):4633–43. doi:10.1021/acs.energyfuels.0c04026.
  • Lin, J., T. Ren, Y. Cheng, J. Nemcik, and G. Wang. 2019. Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study. Energy 188:116115. doi:10.1016/j.energy.2019.116115.
  • Liu, C., B. Xia, and Y. Lu. 2018. Coalbed methane extraction using the self-oscillating water jet slotting method. Energies 11 (4):897. doi:10.3390/en11040897.
  • Liu, X., Z. Wang, D. Song, X. He, and T. Yang. 2020. Variations in surface fractal characteristics of coal subjected to liquid CO2 phase change fracturing. International Journal of Energy Research 44 (11):11. doi:10.1002/er.5568.
  • Liu, Z., Z. Feng, Q. Zhang, Q. Zhang, and D. Zhao. 2015. Heat and deformation effects of coal during adsorption and desorption of carbon dioxide. Journal of Natural Gas Science and Engineering 25:242–52. doi:10.1016/j.jngse.2015.04.024.
  • Ren, C., Y. Dai, and L. Zhao. 2016. Experimental study of low-permeability coal bed by intermittent inject heat. Coal Technology. doi:10.13301/j.cnki.ct.2016.01.009.
  • Salmachi, A., and M. Haghighi. 2012. Feasibility study of thermally enhanced gas recovery of coal seam gas reservoirs using geothermal resources. Energy and Fuels 26 (8):5048–59. doi:10.1021/ef300598e.
  • Salmachi, A., M. Rajabi, C. Wainman, S. Machie, P. Mccabe, B. Camac, and C. Clarkson. 2021. History, geology, in situ stress pattern, gas content and permeability of coal seam gas basins in Australia: A review. Energies 14 (9):2651. doi:10.3390/EN14092651.
  • Shahtalebi, A., C. Khan, A. Dmyterko, P. Shukla, and V. Rudolph. 2016 september 15. Investigation of thermal stimulation of coal seam gas fields for accelerated gas recovery. Fuel 180:301–13. doi: 10.1016/j.fuel.2016.03.057.
  • Su, X., Z. Feng, T. Cai, and Y. Shen. 2022. Coal permeability variation during the heating process considering thermal expansion and desorption shrinkage. Adsorption Science & Technology 13:7848388. doi:10.1155/2022/7848388.
  • Teng, T., Y. Wang, X. He, and P. Chen. 2019. Mathematical modeling and simulation on the stimulation interactions in coalbed methane thermal recovery. Processes 7 (8):526. doi:10.3390/pr7080526.
  • Wang, D., P. Zhang, J. Wei, and C. Yu. 2020. The seepage properties and permeability enhancement mechanism in coal under temperature shocks during unloading confining pressures. Journal of Natural Gas Science and Engineering 77:103242. doi:10.1016/j.jngse.2020.103242.
  • Wang, Z., and Z. Zhu. 2021. Experimental study on the effects of different heating rates on coalbed methane desorption and an analysis of desorption kinetics. ACS omega 6 (50):34889–903. doi:10.1021/acsomega.1c05562.
  • Wei, G., H. Wen, J. Deng, L. Ma, Z. Li, C. Lei, S. Fan, and Y. Liu. 2021. January 15. Liquid CO2 injection to enhance coalbed methane recovery: An experiment and in-situ application test. Fuel:119043.1–119043.11. doi:10.1016/j.fuel.2020.119043.
  • Xie, J., S. Yang, and P. Li. 2022. Mathematical model and numerical simulation of coalbed methane migration considering the adsorption expansion effect. Advances in Materials Science and Engineering 12:1389350. doi:10.1155/2022/1389350.
  • Xue, Y., J. Liu, X. Liang, S. Wang, and Z. Ma. 2022a. Ecological risk assessment of soil and water loss by thermal enhanced methane recovery: Numerical study using two-phase flow simulation. Journal of Cleaner Production 334:2022. doi:10.1016/J.JCLEPRO.2021.130183.
  • Xue, Y., J. Liu, P. G. Ranjith, Z. Zhang, F. Gao, and S. Wang. 2022b. Experimental investigation on the nonlinear characteristics of energy evolution and failure characteristics of coal under different gas pressures. Bull Eng Geol Environ 81 (38):2022. doi:10.1007/s10064-021-02544-4.
  • Yang, T., P. Chen, B. Li, B. Nie, C. Zhu, and Q. Ye. 2019. Potential safety evaluation method based on temperature variation during gas adsorption and desorption on coal surface. Safety Science 113:336–44. doi:10.1016/j.ssci.2018.11.027.
  • Yang, X., G. Wang, F. Du, L. Jin, and H. Gong. 2022. N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation. Energy 239. doi:10.1016/J.ENERGY.2021.122247.
  • Yuan, Y., L. Zuo, Z. Chen, C. Meng, C. Yan, and Z. Gong. 2022. Improvement of coalbed methane recovery rate by carbon dioxide phase transition blast fracturing. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):3659–72. doi:10.1080/15567036.2022.2069885.
  • Zhang, H., Y. Cheng, Q. Liu, L. Yuan, J. Dong, L. Wang, Y. Qi, and W. Wang. 2017. A novel in-seam borehole hydraulic flushing gas extraction technology in the heading face: Enhanced permeability mechanism, gas flow characteristics, and application. Journal of Natural Gas Science & Engineering 46:498–514. doi:10.1016/j.jngse.2017.08.022.
  • Zhao, D., D. Li, Y. Ma, Z. Feng, and Y. Zhao. 2018. Experimental study on methane desorption from lumpy coal under the action of hydraulic and thermal. Advances in Materials Science and Engineering. doi:10.1155/2018/3648430.
  • Zhong, J., Z. Ge, Y. Lu, Z. Zhou, and J. Zheng. 2020. New mechanical model of slotting–directional hydraulic fracturing and experimental study for coalbed methane development. Natural Resources Research 30 (4):1–18. doi:10.1007/s11053-020-09736-x.
  • Zhu, S., and A. Salmachi. 2021. Flowing material balance and rate-transient analysis of horizontal wells in under-saturated coal seam gas reservoirs: A case study from the Qinshui basin, China. Energies 14 (16):16. doi:10.3390/EN14164887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.