265
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Pore Structure evolution and fractal analysis of Shenhua non-caking coal during low-temperature oxidation

, , , , , , , & show all
Pages 6856-6867 | Received 20 Jan 2022, Accepted 12 Jul 2022, Published online: 26 Jul 2022

References

  • Choi, H., C. Thiruppathiraja, S. Kim, Y. Rhim, J. Lim, and S. Lee. 2011. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank Coal. Fuel Processing Technology 92 (10):2005–10. doi:10.1016/J.FUPROC.2011.05.025.
  • Florio, B. J., P. D. Fawell, and M. Small. 2019. The use of the perimeter-area method to calculate the fractal dimension of aggregates. Powder Technology 343:551–59. doi:10.1016/J.POWTEC.2018.11.030.
  • Gao, M.-Q., P.-C. Ji, Z.-Y. Miao, K.-J. Wan, -Q.-Q. He, S.-W. Xue, and Z. Pei. 2020. Pore structure evolution and fractal characteristics of Zhaotong lignite during drying. Fuel 267:117309. doi:10.1016/J.FUEL.2020.117309.
  • Hazra, B., D. Chandra, A. K. Singh, A. K. Varma, D. Mani, P. K. Singh, P. Boral, and J. Buragohain. 2019. Comparative pore structural attributes and fractal dimensions of lower permian organic-matter-bearing sediments of two Indian Basins: Inferences from nitrogen gas adsorption. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 41 (24):2975–88. doi:10.1080/15567036.2019.1582737.
  • He, Y.-J., J. Deng, X.-W. Zhai, Z.-J. Bai, Y. Xiao, and C.-M. Shu. 2022. Experimental investigation of the macroscopic characteristic parameters and microstructure of water-soaked coal during low-temperature oxidation. Journal of Thermal Analysis and Calorimetry Advance online publication. doi:10.1007/S10973-022-11243-5/TABLES/3.
  • Klose, W., and A. Schinkel. 2002. Measurement and modelling of the development of pore size distribution of wood during pyrolysis. Fuel Processing Technology 77–78:459–66. doi:10.1016/S0378-3820(02)00082-6.
  • Lu, Y., Y.-L. Kang, M.-J. Chen, L.-J. You, Y.-Q. Tu, and J. Liu. 2021. Investigation of oxidation and heat treatment to improve mass transport ability in coals. Fuel 283:118840. doi:10.1016/J.FUEL.2020.118840.
  • Mahamud, M. M., and M. F. Novo. 2008. The use of fractal analysis in the textural characterization of coals. Fuel 87 (2):222–31. doi:10.1016/J.FUEL.2007.04.020.
  • Meng, X.-L., M.-Q. Gao, R.-Z. Chu, -G.-G. Wu, and Q. Fang. 2016. Multiple linear equation of pore structure and coal–oxygen diffusion on low temperature oxidation process of lignite. Chinese Journal of Chemical Engineering 24 (6):818–23. doi:10.1016/J.CJCHE.2016.05.007.
  • Mohalik, N. K., E. Lester, and I. S. Lowndes. 2016. Review of experimental methods to determine spontaneous combustion susceptibility of coal – Indian Context. International Journal of Mining, Reclamation and Environment 31:301–32. doi:10.1080/17480930.2016.1232334.
  • Mostaghimi, P., R. T. Armstrong, A. Gerami, Y.-B. Hu, Y. Jing, F. Kamali, M. Liu, et al. 2017. Cleat-scale characterisation of coal: An Overview. Journal of Natural Gas Science and Engineering 39:143–60. doi:10.1016/J.JNGSE.2017.01.025.
  • Mou, P.-W., J.-N. Pan, Q.-H. Niu, -Z.-Z. Wang, Y.-B. Li, and D.-Y. Song. 2021. Coal pores: Methods, types, and characteristics. Energy and Fuels 35 (9):7467–84. doi:10.1021/acs.energyfuels.1c00344.
  • Neimark, A. V., and K. K. Unger. 1993. Method of discrimination of surface fractality. Journal of Colloid and Interface Science 158 (2):412–19. doi:10.1006/JCIS.1993.1273.
  • Onifade, M., and B. Genc. 2018. Spontaneous combustion of coals and coal-shales. International Journal of Mining Science and Technology 28 (6):933–40. doi:10.1016/J.IJMST.2018.05.013.
  • Othman, M. R., Z. Helwani, and Martunus. 2010. Simulated fractal permeability for porous membranes. Applied Mathematical Modelling 34 (9):2452–64. doi:10.1016/J.APM.2009.11.010.
  • Pfeifer, P., Y.-J. Wu, M. W. Cole, and J. Krim. 1989. Multilayer adsorption on a fractally rough sSurface. Physical Review Letters 62 (17):1997–2000. doi:10.1103/PhysRevLett.62.1997.
  • Ren, J. G., G.-C. Zhang, Z.-M. Song, G.-F. Liu, and B. Li. 2014. Comprehensive fractal description of porosity of coal of different ranks. The Scientific World Journal 2014:490318. doi:10.1155/2014/490318.
  • Rish, S. K., A. Tahmasebi, and J.-L. G Yu. 2020. A DSC study on the impact of low-temperature oxidation on the behavior and drying of water in lignite. Journal of Thermal Analysis and Calorimetry 139 (6):3507–17. doi:10.1007/S10973-019-08749-W/FIGURES/8.
  • Shan, L.-Y., S. Hu, Y.-F. Zhang, P. Wu, K. Xu, J. Xu, S. Su, Y. Wang, X. Hu, and J. Xiang. 2019. Relationship between fractal meso-structural and mechanical characteristics of lump coal under uniaxial compression at different temperatures. Fuel Processing Technology 194:106112. doi:10.1016/J.FUPROC.2019.05.035.
  • Shao, H.-D., S.-Q. Yang, and K. Yang. 2022. Effect of thermal damage on pore development and oxidation reaction of coal. Asia-Pacific Journal of Chemical Engineering 17 (3). doi: 10.1002/APJ.2774.
  • Tan, B., G. Cheng, X.-M. Zhu, and X.-B. Yang. 2020. Experimental study on the physisorption characteristics of O2 in coal powder are effected by coal nanopore Structure. Scientific Reports 10 (1):6946. doi:10.1038/s41598-020-63988-4.
  • Tang, Y.-B., and H.-E. Wang. 2019. Experimental investigation on microstructure evolution and spontaneous combustion properties of secondary oxidation of lignite. Process Safety and Environmental Protection 124:143–50. doi:10.1016/J.PSEP.2019.01.031.
  • Taub, E., A. Hassid, S. Ruthstein, and H. Cohen. 2020. Mechanism underlying the emission of gases during the low-temperature oxidation of bituminous and lignite coal piles: The involvement of radicals. ACS Omega 5 (44):28500–09. doi:10.1021/acsomega.0c02841.
  • Wang, X.-L., R. He, and Y.-L. Chen. 2008. Evolution of porous fractal properties during Coal devolatilization. Fuel 87 (6):878–84. doi:10.1016/J.FUEL.2007.05.038.
  • Wedler, C., and R. Span. 2021. A pore-structure dependent kinetic adsorption model for consideration in char conversion – Adsorption kinetics of CO2 on biomass chars. Chemical Engineering Science 231:116281. doi:10.1016/J.CES.2020.116281.
  • Yao, Y.-B., D.-M. Liu, D.-Z. Tang, S.-H. Tang, and W.-H. Huang. 2008. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. International Journal of Coal Geology 73 (1):27–42. doi:10.1016/J.COAL.2007.07.003.
  • Yu, Z., X.-Q. Zhang, W. Yang, -H.-H. Xin, S.-R. Hu, and Y. Song. 2020. Pore structure and its impact on susceptibility to coal spontaneous combustion based on multiscale and multifractal Analysis. Scientific Reports 10:1–15. doi:10.1038/s41598-020-63715-z.
  • Zhang, B.-Q., and S.-F. Li. 1995. Determination of the surface fractal dimension for porous media by Mercury Porosimetry. Industrial & Engineering Chemistry Research 34 (4):1383–86. doi:10.1021/ie00043a044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.