181
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effect of particle loading and temperature on the rheological behavior of Al2O3 and TiO2 nanofluids

, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 7062-7079 | Received 23 Feb 2022, Accepted 07 Jul 2022, Published online: 03 Aug 2022

References

  • Abdelhalim, M. A., M. M. Mady, and M. M. Ghannam. 2011. Rheological and dielectric properties of different gold nanoparticle sizes. Lipids in Health and Disease 10 (1):208. doi:10.1186/1476-511X-10-208.
  • Aladag, B., S. Halelfadl, N. Doner, T. Maré, S. Duret, and P. Estellé. 2012. Experimental investigations of the viscosity of nanofluids at low temperatures. Applied Energy 97:876–80. doi:10.1016/j.apenergy.2011.12.101.
  • Ali, N., J. A. Teixeira, and A. Addali. 2018. A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. Journal of Nanomaterials 6978130: 33.
  • Alphonse, P., R. Bleta, and R. Soules. 2009. Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. Journal of Colloid and Interface Science 337 (1):81–87. doi:10.1016/j.jcis.2009.04.087.
  • Anoop, K. B., S. Kabelac, T. Sundararajan, and S. K. Das. 2009. Rheological and flow characteristics of nanofluids: Influence of electroviscous effects and particle agglomeration. Journal of Applied Physics 106 (3):034909. doi:10.1063/1.3182807.
  • Banfield, J. F., and D. R. Veblen. 1992. Conversion of perovskite to anatase and TiO2 (B): A TEM study and the use of fundamental building blocks for understanding relationships among the TiO2, minerals. American Mineralogist 77 (5–6):545–57.
  • Bender, J., and N. J. Wagner. 1995. Optical measurement of the contribution of colloidal forces to the rheology of concentrated suspensions. Journal of Colloid and Interface Science 172 (1):171–84. doi:10.1006/jcis.1995.1240.
  • Chang, H., C. S. Jwo, C. H. Lo, T. T. Tsung, M. J. Kao, and H. M. Lin. 2005. Rheology of CuO nanoparticle suspension prepared by ASNSS. Reviews on Advanced Materials Science 10:128–32.
  • Chen, H., Y. Ding, and C. Tan. 2007. Rheological behaviour of nanofluids. New Journal of Physics 9 (10):367. doi:10.1088/1367-2630/9/10/367.
  • Chen, H., W. Yang, Y. He, Y. Ding, L. Zhang, C. Tan, A. A. Lapkin, and D. V. Bavykin. 2008. Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids). Powder Technology 183 (1):63–72. doi:10.1016/j.powtec.2007.11.014.
  • Chen, H., S. Witharana, Y. Jin, C. Kim, and Y. Ding. 2009. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology 7 (2):151–57. doi:10.1016/j.partic.2009.01.005.
  • Chevalier, J., O. Tillement, and F. Ayela. 2009. Structure and rheology of SiO2 nanoparticle suspensions under very high shear rates. Physics Review E 80 (5):051403. doi:10.1103/PhysRevE.80.051403.
  • Choi, S. U. S., and J. A. Eastman. 1995. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed 231:99–106.
  • Das, S. K., N. Putra, and W. Roetzel. 2003. Pool boiling characteristics of nano-fluids. International Journal of Heat and Mass Transfer 46 (5):851–62. doi:10.1016/S0017-9310(02)00348-4.
  • Das, P. K., A. K. Mallik, A. K. Santra, and R. Ganguly. 2016. Synthesis and characterization of TiO2–water nanofluids with different surfactants. International Communications in Heat and Mass Transfer 75:341–48. doi:10.1016/j.icheatmasstransfer.2016.05.011.
  • Das, P. K., N. Islam, A. K. Santra, and R. Ganguly. 2017. Experimental investigation of thermophysical properties of Al2O3–water nanofluid: Role of surfactants. Journal of Molecular Liquids 237:304–12. doi:10.1016/j.molliq.2017.04.099.
  • Das, P. K., A. K. Mallik, R. Ganguly, and A. K. Santra. 2018. Stability and thermophysical measurements of TiO2 (anatase) nanofluids with different surfactants. Journal of Molecular Liquids 254:98–107. doi:10.1016/j.molliq.2018.01.075.
  • Das, P. K., A. K. Mallik, A. H. Molla, A. K. Santra, R. Ganguly, A. Saha, S. Kumar, and V. K. Aswal. 2021. Experimental investigation for stability and surface properties of TiO2 and Al2O3 water-based nanofluids. Journal of Thermal Analysis and Calorimetry 147:5617–35. doi:10.1007/s10973-021-10894-0.
  • Duan, F., T. F. Wong, and A. Crivoi. 2012. Dynamic viscosity measurement in non-Newtonian graphite nanofluids. Nanoscale Research Letters 7 (1):360. doi:10.1186/1556-276X-7-360.
  • Esfe, M. H., and M. Mosaferi. 2020. Effect of MgO nanoparticles suspension on rheological behavior and a new correlation. Journal of Molecular Liquids 309:112632. doi:10.1016/j.molliq.2020.112632.
  • Garg, P., J. L. Alvarado, C. Marsh, T. A. Carlson, D. A. Kessler, and K. Annamalai. 2009. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. International Journal of Heat and Mass Transfer 52 (21–22):5090–101. doi:10.1016/j.ijheatmasstransfer.2009.04.029.
  • He, Y., Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu. 2007. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer 50 (11–12):2272–81. doi:10.1016/j.ijheatmasstransfer.2006.10.024.
  • Hojjat, M., S. G. Etemad, R. Bagheri, and J. Thibault. 2011. Rheological characteristics of non-Newtonian nanofluids: Experimental investigation. International Communications in Heat and Mass Transfer 38 (2):144–48. doi:10.1016/j.icheatmasstransfer.2010.11.019.
  • Hong, R. Y., Z. Q. Ren, Y. P. Han, H. Z. Li, Y. Zheng, and J. Ding. 2007. Rheological properties of water-based Fe3O4 ferrofluids. Chemical Engineering Science 62 (21):5912–24. doi:10.1016/j.ces.2007.06.010.
  • Kaszuba, M., J. Corbett, F. M. Watson, and A. Jones. 2010. High–concentration zeta potential measurements using light–scattering techniques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1927):4439–51. doi:10.1098/rsta.2010.0175.
  • Ko, G. H., K. Heo, K. Lee, D. S. Kim, C. Kim, Y. Sohn, and M. Choi. 2007. An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube. International Journal of Heat and Mass Transfer 50 (23–24):4749–53. doi:10.1016/j.ijheatmasstransfer.2007.03.029.
  • Kobayashi, M., H. Kato, and M. Kakihana. 2012. Synthesis of spindle and square bipyramid-shaped anatase-type titanium dioxide crystals by a solvothermal method using ethylenediamine. Journal of the Ceramic Society of Japan 120 (1407):494–99. doi:10.2109/jcersj2.120.494.
  • Mahbubul, I. M., R. Saidur, M. A. Amalina, and M. E. Niza. 2016. Influence of ultrasonication duration on rheological properties of nanofluid: An experimental study with alumina–water nanofluid. International Communications in Heat and Mass Transfer 76:33–40. doi:10.1016/j.icheatmasstransfer.2016.05.014.
  • Maranzano, B. J., and N. J. Wagner. 2001. The effects of interparticle interactions and particle size on reversible shear thickening hard sphere colloidal dispersions. Journal of Rheology 45 (5):1205–22. doi:10.1122/1.1392295.
  • McNamara, K., and S. A. M. Tofail. 2017. Nanoparticles in biomedical applications. Advances in Physics: X 2 (1):54–88.
  • Mehrali, M., E. Sadeghinezhad, S. T. Latibari, S. N. Kazi, M. Mehrali, M. N. Zubir, and H. S. Metselaar. 2014. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Research Letters 9 (1):15. doi:10.1186/1556-276X-9-15.
  • Moldoveanu, G. M., A. A. Minea, M. Iacob, C. Ibanescu, and M. Danu. 2018. Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid. Thermochimica Acta 659:203–12. doi:10.1016/j.tca.2017.12.008.
  • Mondragon, R., J. E. Julia, A. Barba, and J. C. Jarque. 2012. Determination of the packing fraction of silica nanoparticles from the rheological and viscoelastic measurements of nanofluids. Chemical Engineering Science 80:119–27. doi:10.1016/j.ces.2012.06.009.
  • Mostafizur, R. M., A. R. Abdul Aziz, R. Saidur, M. H. U. Bhuiyan, and I. M. Mahbubul. 2014. Effect of temperature and volume fraction on rheology of methanol based nanofluids. International Journal of Heat and Mass Transfer 77:765–69. doi:10.1016/j.ijheatmasstransfer.2014.05.055.
  • Murshed, S. M. S., S. H. Tan, and N. T. Nguyen. 2008. Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. Journal of Physics D: Applied Physics 41 (8):1–5.
  • Namburu, P. K., D. P. Kulkarni, D. Mishra, and D. K. Das. 2007. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal and Fluid Science 32 (2):397–402. doi:10.1016/j.expthermflusci.2007.05.001.
  • Nguyen, C. T., F. Desgranges, G. Roy, N. Galanis, T. Maré, S. Boucher, and H. A. Mintsa. 2007. Temperature and particle-size dependent viscosity data for water based nanofluids – Hysteresis phenomenon. International Journal of Heat and Fluid Flow 28 (6):1492–506. doi:10.1016/j.ijheatfluidflow.2007.02.004.
  • N, Murugu Nachippana, M. Parthasarathy, et al. Experimental assessment on characteristics of premixed charge compression ignition engine fueled with multi-walled carbon nanotube-included Tamanu methyl ester. Fuel. 2022, 323, 124415.
  • Pastoriza-Gallego, M. J., C. Casanova, J. A. Legido, and M. M. Piñeiro. 2011. CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilibria 300 (1–2):188–96. doi:10.1016/j.fluid.2010.10.015.
  • Penkavova, V., J. Tihon, and O. Wein. 2011. Stability and rheology of dilute TiO2-water nanofluids. Nanoscale Research Letters 6 (1):273. doi:10.1186/1556-276X-6-273.
  • Phuoc, T. X., M. Massoudi, and R. H. Chen. 2011. Viscosity and thermal conductivity of nanofluids containing multiwalled carbon nanotubes stabilized by chitosan. International Journal of Thermal Sciences 50 (1):12–18. doi:10.1016/j.ijthermalsci.2010.09.008.
  • Prasher, R., D. Song, J. Wang, and P. Phelan. 2006. Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters 89 (13):133108. doi:10.1063/1.2356113.
  • P. V., Elumalai., S. Senthur, et al. Effectiveness of Hydrogen and Nanoparticles Addition in Eucalyptus Biofuel for Improving the Performance and Reduction of Emission in CI Engine. Energy, Environment, and Sustainability, 2022, 173–19.
  • Richmond, W. R., R. L. Jones, and P. D. Fawell. 1998. The relationship between particle aggregation and rheology in mixed silica–titania suspensions. Chemical Engineering Journal 71 (1):67–75. doi:10.1016/S1385-8947(98)00105-3.
  • Sahoo, B. C., R. S. Vajjha, R. Ganguli, G. A. Chukwu, and D. K. Das. 2009. Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations. Petroleum Science and Technology 27 (15):1757–70. doi:10.1080/10916460802640241.
  • Singh, D., E. Timofeeva, W. Yu, J. Routbort, D. France, D. Smith, and J. M. Lopez-Cepero. 2009. An investigation of silicon carbide-water nanofluid for heat transfer applications. Journal of Applied Physics 105 (6):064306. doi:10.1063/1.3082094.
  • Teipel, U., and U. F. Barth. 2001. Rheology of nano-scale aluminum suspensions. Propellants Explosives Pyrotechnics 26 (6):268–72. doi:10.1002/1521-4087(200112)26:6<268::AID-PREP268>3.0.CO;2-L.
  • Tseng, W. J., and C. H. Wu. 2002. Aggregation, rheology and electrophoretic packing structure of aqueous A12O3 nanoparticle suspensions. Acta Materialia 50 (15):3757–66. doi:10.1016/S1359-6454(02)00142-8.
  • Tseng, W. J., and K. C. Lin. 2003. Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Materials Science and Engineering: A 355 (1–2):186–92. doi:10.1016/S0921-5093(03)00063-7.
  • Tseng, W. J., and F. Tzeng. 2006. Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 276 (1–3):34–39. doi:10.1016/j.colsurfa.2005.09.046.
  • Vallejo, J. P., G. Żyła, J. Fernández-Seara, and L. Lugo. 2018. Rheological behaviour of functionalized graphene nanoplatelet nanofluids based on water and propylene glycol:water mixtures. International Communications in Heat and Mass Transfer 99:43–53. doi:10.1016/j.icheatmasstransfer.2018.10.001.
  • Wagner, N. J., and J. F. Brady. 2009. Shear thickening in colloidal dispersions. Physics Today 62 (10):27–32. doi:10.1063/1.3248476.
  • Wang, J., J. Zhu, X. Zhang, and Y. Chen. 2013. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Experimental Thermal and Fluid Science 44:716–21. doi:10.1016/j.expthermflusci.2012.09.013.
  • Yu, L., Y. Bian, Y. Liu, and X. Xinsheng. 2020. Experimental investigation of rheological properties of low concentrated TiO2/water and MWCNT-TiO2/water hybrid nanofluids. Heat and Mass Transfer 56 (8):2545–56. doi:10.1007/s00231-020-02868-z.
  • Zhou, B., X. Qian, M. Li, J. Ma, L. Liu, C. Hu, Z. Xu, and X. Jiao. 2015. Tailoring the chemical composition and dispersion behavior of fluorinated graphene oxide via CF4 plasma. Journal of Nanoparticle Research 17 (3):130. doi:10.1007/s11051-015-2946-0.
  • Zhu, H., C. Li, D. Wu, C. Zhang, and Y. Yin. 2010. Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Science China Technologies Sciences 53 (2):360–68. doi:10.1007/s11431-010-0032-5.
  • Zhuang, Y., Z. Liu, and X. Wenbin. 2021. Experimental investigation on the non-Newtonian to Newtonian rheology transition of nanoparticles enhanced phase change material during melting. Colloids and Surfaces. A, Physicochemical and Engineering Aspects 629:127432. doi:10.1016/j.colsurfa.2021.127432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.